预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共33页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

摘要 小波分析理论是一种新兴的信号处理理论,它在时间上和频率上都有很好的局部性,这使得小波分析非常适合于时—频分析,借助时—频局部分析特性,小波分析理论已经成为信号去噪中的一种重要的工具。利用小波方法去噪,是小波分析应用于实际的重要方面。小波去噪的关键是如何选择阈值和如何利用阈值来处理小波系数,通过对小波阈值化去噪的原理介绍,运用MATLAB中的小波工具箱,对一个含噪信号进行阈值去噪,实例验证理论的实际效果,证实了理论的可靠性。本文设计了几种小波去噪方法,其中的阈值去噪的方法是一种实现简单、效果较好的小波去噪方法。 关键词:小波变换;去噪;阈值 Abstract Waveletanalysistheoryisanewtheoryofsignalprocessandithasgoodlocalizationinbothfrequencyandtimedo-mains.Itmakesthewaveletanalysissuitablefortime-frequencyanalysis.Waveletanalysishasplayedaparticularlyimpor-tantroleindenoising,duetothefactthatithasthepropertyoftime-frequencyanalysis.Usingwaveletmethodsinde-noising,isanimportantaspectintheapplicationofwaveletanalysis.Thekeyofwaveletde-noisingishowtochooseathresholdandhowtousethresholdstodealwithwaveletcoefficients.Itconfirmsthereliabilityofthetheorythroughthewaveletthresholdde-noisingprinciple,theuseofthewavelettoolboxinMATLAB,carryingonthresholdde-noisingforasignalwithnoiseandactualresultsoftheexampleconfirmationtheory.Inthispaper,themethodofWaveletAnalysisisanalyzed.andthemethodofthresholddenoisingisagoodmethodofeasyrealizationandeffectivetoreducethenoise. Keywords:Waveletanalysis;denoising;threshold 第1章绪论 1.1研究背景和意义 随着计算机技术的飞速发展,数字图像处理技术获得了飞速的发展。去除图像的噪声是图像处理过程中的一个重要环节,其结果直接影响到图像质量和特征提取的精确性。现实中由于获取图像的环境、设备及传输过程存在不确定因素,使得图像受到噪声污染是不可避免的。现代医学中,影像被广泛应用于诊断和治疗,是必不可少的手段和工具.医学图像的好坏直接影响着医生对病情的诊断和治疗.医学图像在获得的过程中都会混有各种噪声,因此有必要进行去噪研究。 如何减少甚至消除噪声一直是图像处理研究中的课题之一。噪声是影响图像质量的重要因素;噪声的存在导致图像的某些特征细节不能被辨识,图像信噪比下降。在图像处理中如何有效地去除噪声,提取图像信息变得尤为重要。利用计算机等设备处理图像,容易受噪声干扰造成质量下降,极大影响了人们从图像中提取信息,所以非常有必要在利用图像之前消除噪声。 信号在生成和传输的过程中会受到各种各样噪声的干扰,对信息的处理、传输和存储造成极大的影响。寻求一种既能有效地减小噪声,又能很好地保留信号原始信息的方法,是人们一直追求的目标。利用振动信号或状态量对设备进行诊断是设备故障诊断中最有效、最常用的方法,过去常用传统的基于快速傅里叶变换(FFT)的频谱分析方法进行振动信号处理,但是傅里叶分析存在着严重的不足,它只适于分析时不变系统的平稳信号,而不适于分析非平稳信号,且傅里叶变换对在检测信号中包含的趋势、突变事件的开始和结束等特征分析时也显得无能为力。出于对非平稳信号和突变信号的分析的迫切要求,法国地球物理学家Morlet于1984年提出了一种新的线性时频分析方法——小波分析理论,为机械故障诊断中的非平稳信号分析,弱信号提取,信号滤波等提供了一条有效的途径。 从数学上看,小波去噪本质是一个函数逼近问题,即如何在由小波母函数伸缩和平移所展成的函数空间中,根据提出的衡量准则,寻找对原信号的最佳逼近,完成原信号和噪声信