预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

杨浦区2014学年度第一学期期中质量抽测 初三数学 (满分:100分完卷时间:90分钟)2014.11 一、选择题:(本大题共6题,每题3分,满分18分) 1.已知,那么等于……………………………………………(▲) (A);(B);(C);(D). 2.下列条件中,能判断两个等腰三角形相似的是…………………………………(▲) (A)都含有一个30°的内角;(B)都含有一个45°的内角; (C)都含有一个60°的内角;(D)都含有一个80°的内角. 3.Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别是a、b、c,则下列关系式正确的是…………………………………………………………………………………(▲) A B C D M N G E F (第4题图) (A);(B);(C);(D). 4.四边形ABCD中,点F在边BC上,直线AF交DC的 延长线于点E,交对角线BD于点G,过点G的直线交AB 于点M,交DC于点N(如图),则能推得的平行 线是…………………………………………………(▲) (A)AD//MN;(B)AD//BC;(C)BC//MN;(D)AB//CD. 5.对于△ABC与△DEF,可由∠A=∠D和下列某一个条件推得△ABC∽△DEF,这个条件是………………………………………………………………………………………(▲) (A);(B);(C);(D). 6.某人在坡度是的斜坡上前进10米时,在铅垂方向上上升了h1米;在坡度是的斜坡上前进10米时,在铅垂方向上上升了h2米,则关于h1和h2的数量关系,下列正确的是QUOTE………………………………………………………………………………………(▲) (A)h1=h2;(B)h1>h2;(C)h1<h2;(D)不能确定. A B C D E F (第10题图) 二、填空题:(本大题共12题,每题3分,满分36分) 7.线段5和4的比例中项是▲. 8.▲. 9.已知点C在线段AB上,且, 那么的值为▲. 10.如图,直线被直线所截,如果, ,,那么BD=▲. A B C D E F (第12题图) 11.直角三角形的重心到直角顶点的距离是4,那么该直角三角形的斜边长是▲. 12.如图,□ABCD中,E在边AD上,EC与BD交于点F, 若,则的值是▲. 13.两相似三角形的面积差是4cm2,周长比是2:3,那么较小的 三角形的面积是▲cm2. 14.如图,梯形ABCD中AD//BC,对角线AC与BD交于点O,如果,那么 的值为▲. 15.如图,在△ABC中,DE//BC交AB于点D,交AC于点E,3:2,若,则=▲(用表示). 16.如图,△ABC中,AH⊥BC,垂足H在BC边上,如果∠B=α,∠C=β,AB=5,那么AC=▲(用含α和β的式子表示). 17.□ABCD(如图)中,点P在对角线BD上(不与点B、D重合),添加一个条件,使得△BCD与△ADP相似,这个条件可以是▲. A B C D O (第14题图) 18.在△ABC中,AB=8,AC=6,点P是AB上的一动点,点E在边AC上,设BP=x,若△APE∽△ACB(点P与点C对应),则x的取值范围是▲_. A B C D (第17题图) A B C H (第16题图) A B C D E (第15题图) 三、解答题(本大题共7题,满分46分) A B C D E F G (第19题图) 19.(本题满分5分)如图,□ABCD中,点E在BA的延长线上,联结EC交AD于点F,交对角线BD于点G。求证:. A B C D (第20题图) 20.(本题满分5分)如图,已知点D为△ABC中AC边上的一点,且,设,。 (1)请用表示向量; (2)在图中画出向量分别在方向上的分向量。 (不要求写作法,但要指出所作图中表示结论的向量) A B C H D E F G M (第21题图) 21.(本题满分5分)如图,已知面积为40cm2的锐角△ABC中,AH⊥BC,垂足为点H,BC=10cm,四边形DEFG是△ABC的内接正方形。求正方形DEFG的面积。 22.(本题满分5分)如图,正方形ABCD中,点P为边AD上一点,DP=3AP,点Q为边AB的中点,联结PQ交对角线AC于点E。试求线段EP与线段EQ的比值。 A B C D Q P E (第22题图) 23.(本题满分7分)如图,已知梯形ABCD中,AD//BC,∠ACD=∠B,过点D作DM//AB交AC于点M。 A B C D M (第23题图) (1)写出图中所有相似的三角形,要求将彼此相似的三角形之间用“∽”连接,且对应点写在对应的位置上; (2)求证:. 2