预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

课程设计题目: 用matlab仿真光束的传输特性。 任务和要求 用matlab仿真光束通过光学元件的变换。 设透镜材料为k9玻璃,对1064nm波长的折射率为1.5062,镜片中心厚度为3mm,凸面曲率半径,设为100mm,初始光线距离透镜平面20mm。用matlab仿真近轴光线(至少10条)经过平凸透镜的焦距,与理论焦距值进行对比,得出误差大小。 已知透镜的结构参数为,,,(K9玻璃),,,物点A距第一面顶点的距离为100,由A点计算三条沿光轴夹角分别为10、20、30的光线的成像。试用Matlab对以上三条光线光路和近轴光线光路进行仿真,并得出实际光线的球差大小。 设半径为1mm的平面波经凸面曲率半径为25mm,中心厚度3mm的平凸透镜。用matlab仿真平面波在透镜几何焦平面上的聚焦光斑强度分布,计算光斑半径。并与理论光斑半径值进行对比,得出误差大小。(方法:采用波动理论,利用基尔霍夫—菲涅尔衍射积分公式。) 2、用MATLAB仿真平行光束的衍射强度分布图样。(夫朗和费矩形孔衍射、夫朗和费圆孔衍射、夫朗和费单缝和多缝衍射。) 3、用MATLAB仿真厄米—高斯光束在真空中的传输过程。(包括三维强度分布和平面的灰度图。) 4、(补充题)查找文献,掌握各类空心光束的表达式,采用费更斯-菲涅尔原理推导各类空心光束在真空中传输的光强表达式。用matlab对不同传输距离处的光强进行仿真。 三、理论推导部分  将坐标原点选在透镜中心处,θ1=arcsin(y1/r),由n1*sinθ1=n2*sinθ2可得出θ2=arcsin(n1/n2)*(y1/r),由几何关系可得到θ=θ2-θ1,则出射光线的斜率k=tan(θ2-θ1),当入射直线y=y1时,x1=d-(r-),并设出射直线为y=k*x+b;由直线经过(x1,y1)即可求出b值,从而就可以求出射直线。由单透镜焦点计算公式1/f=-(n-1)*(1/r1-1/r2)可求得f=193.6858。  利用近轴光学公式i1=(l1-r1)*u1/r1,i11=n1*i/n11,u11=u1+i1-i11 l11=r1+r1*i11/u11和转面公式u2=u11,l2=l11-d1可以求得u11、 u22、l22、h2等。 入射光线的夹角为u1,设入射光线为y1=k1*x1+b1其中的斜率k1=-u1又由于入射光线经过经过(-100,0)就可以求出b1。由h1=l1*u1即为y1,当y1为定值时就可以得到第一个横坐标x0,再利用最后的出射光线公式y3=k3*x3+b3,k3=-u22,又因为最终出射经过(d+l22,0)可求出b3,利用转面公式h2=h1-d*u11,即为y3可求出第二个横坐标x00。再求在透镜中的直线斜率k2=((h2-h1)/(x00-x0)),y2=k2*x2+b2经过(x0,h1)即可求得b2值,从而即可求得三条直线。 实际光束求法同理。 利用菲涅耳近似公式 求衍射面上的光强要对孔径上的点求积分可以转换成对其x1,y1的微分求和,其中公式中的z1=f。 (1)夫朗和费矩形孔衍射 若衍射孔为矩形则在透镜焦平面上得到的衍射图样如图,衍射图样的主要特征为衍射亮斑集中分布在两个相互垂直的方向上,并且x轴上的亮斑宽度与y轴亮斑宽度之比,恰与矩形孔在两个轴上的宽度相反。 其中的θ为θx,同样的β中的θ为θy,利用θx=x/f,θy=y/f进行求解。 (2)夫朗和费圆形孔衍射 夫朗和费圆孔衍射的讨论方法和矩形孔衍射的讨论方法相同,只是由于圆孔的几何对称性,采用极坐标更为方便。 Ф=kaθ (3)夫朗和费单缝衍射 对于前面讨论的夫朗和费矩形孔衍射,如果矩形的一个方向的尺寸比另一个方向大得多,则该矩形孔衍射就变成单缝衍射(如图),这时沿y方向的衍射效应不明显,只在x方向有亮暗变化的衍射图样。 实验中通过利用θ=x/f进行求解 (4)夫朗和费多缝衍射 夫朗和费多缝衍射装置如图,其每条狭缝均平行于y1方向,沿x1方向的缝宽为a,相邻狭缝的间距为d,在研究多缝衍射时,由于后透镜的存在使衍射屏上每个单缝的衍射条纹位置与位置无关。因此,用平行光照射多缝时,其每一个单缝都要产生自己的衍射,形成各自一套衍射条纹。当每个单缝等宽时,各套衍射条纹在透镜焦平面上完全重叠,其总光强分布为它们的干涉叠加。 四、Matlab仿真部分 clearall r=100; n1=1.5163; n2=1;%透镜的曲率半径为100mm,透镜的折射率n1=1.5,空气的折射率n2=1 d=3; %x=77:0.1:320; figure(1) forn=-5:5 y1=0.1*n; %holdon; %plot(x1,y1); a1=asin(y1/