预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

摆式寻北仪马达变速寻北方法设想 1.问题的提出 摆式寻北仪存在仪器常数长期不稳定的问题,其主要原因是悬带以及导流丝零位的不稳定其次是光电测量和光学系统的不稳定所致。 假设光电测量系统是稳定的,有些系统采用所谓测前测后零位修正。在采用力反馈寻北测量方法时,悬带零位不稳定表现为“静摆”零位的加矩电流,或称静态零偏的长期不稳定性。通常采用定期校准方法解决或者采用多次不同方位的寻北测量予以修正。 对于使用直流陀螺马达的系统,由于陀螺马达转子镶有多个磁钢,每次转子停转的旋转位置是随机的因此磁钢辐射磁场状态也是随机的因此其测前测后零位也是随机的使得测前测后零位方法存在不确定性. 能否寻找一种方法使之在每次寻北测量过程中自动完成零偏校准或者修正呢?(此时是“动摆零位”的校准或者修正)陀螺马达转动过程中转子磁钢的辐射磁场被调制,形成所谓动摆零位。真正影响寻北精度的应该是动摆零位。 下面提出的方法均以力反馈测量方式并且假设在粗寻北完成之后为前提。(只能解决由于常值干扰力矩引起的仪器常数变化的问题!!) 2二次测量 假设上述零位不稳定属于长期(数小时以上)不稳定特性也即在几分钟的寻北测量过程中可以认为基本上是稳定的。根据捷联寻北方法中消除常值项的原理可知,如果能采用二次测量则有可能实现常数的自动校准或者修正。所谓二次寻北测量应该是两次不同状态的测量,用以建立两个独立测量方程。 一个寻北测回由两次不同状态的寻北测量完成,两个状态的差别应该是改变测量过程中的指北力矩,建立两个独立方程。例如改变寻北测量的架设方位,也即改变粗瞄角之后进行第二次寻北测量(乌克兰寻北仪即是如此)或者改变陀螺马达的转速即改变H值。 2.1.两档转速的寻北测量 例如,全速和半速两次测量或者(+H)和(-H)两次寻北测量。 这里假设,零位不稳定性与陀螺马达转速无关! 为了加快粗寻北,陀螺马达首先进入低速同步状态,通过循环阻尼或者步进寻北等方法进行快速粗寻北。精寻北如下: 第一次是陀螺马达在低速度下,例如a<1倍额定速状态 (1) 第二次螺马达在额定速度条件下 (2) 两次寻北采样时间相同。为了消除常值项将(1)-(2) 上式指出,a不可接近1。但是如果a取值过小,则第二次寻北测量的陀螺动量矩过小,寻北测量过程没有足够的抗干扰能力。 2.2.正反转变速寻北 如果a取值为-1,即陀螺马达全速反转,效果最好。但是可能存在其他问题,例如寻北时间加长、常值项变化、马达发热等。 3.连续变速寻北测量 上述方法的缺点是,为了实现两种寻北测量状态的转换必须反复进行陀螺房的锁定和开锁(可以是自动进行的)操作同时伴随着陀螺马达的制动和重新启动,以便完成马达变速或者寻北方位的重新设定。这将使寻北操作复杂化和寻北时间加长。虽然目前自动锁放机构已经被普遍使用,两档转速的寻北测量过程很容易实现自动化。 如果能在一次开锁寻北测量过程中完成寻北状态的转换则可避免上述缺点。与乌克兰的摆式寻北仪二次方位装角相比操作更为简单。 3.1.连续变速一次测量 这里提出一种连续改变陀螺马达转速方法的设想,希望能实现在一次寻北测量过程中完成寻北状态的变换。 假设陀螺马达在低速同步条件下通过速度阻尼或者其他方法完成粗寻北之后进入变速寻北. 陀螺马达在突然变速(出现角加速度)时,陀螺转子将产生惯性力矩作用于陀螺房,角加速度越大,此惯性力矩也越大。陀螺房的惯性力矩必定通过悬带作用于寻北仪主体。在传递此转矩时下悬带夹的夹持部位出现绕水平轴的转矩,严重时将损坏悬带或者使悬带特性产生不可逆转的变化,反而加剧悬带零位的不稳定性,除非采用磁悬浮。 不难看出,当悬带截面的长边垂直于H轴时,上述惯性矩对悬带的干扰最小。图1。 如果以适当的角加速度“连续”而平稳的改变马达转速使之对悬带的影响是否可以忽略不计?这是本方法的能否成立的前提! H M 悬带截面 陀螺转子 陀螺房 在力反馈状态下以“连续、平稳”和适量的变速,代替两次变速寻北可省去上述无效时间。可以说此时陀螺马达的启动时间也用来进行寻北了. 变速范围越小,上述反力矩也越小!是否选择在180s内,马达转速从额定速度的2/3开始加速到额定转速。假设变速过程中,各常值项不变! 稳态条件下,力反馈回路所需的平衡力矩为 力反馈回路的加矩电流为 或者 转子转动惯量 转子初始角速度 力矩器刻度系数 悬带零位的剩余扭矩 如果马达从额定转速2/3以匀加速度运行则 变速过程的常值角加速度 变速过程中积分力反馈电流: 为了得到两个独立方程,采用等分两段段积分,0-T/2和T/2-T。 在已知力反馈回路力矩器刻度系数和纬度的条件下 第一段积分面积 第二段积分是从第一段积分的剩余面积开始下减 为了消除常值项 为小角度则 上式结果似乎与额定转速无关,但是实际上,如果额定转速过小,测量