预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

学案45空间向量及其运算 导学目标:1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直. 自主梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有______和______的量叫做空间向量. (2)相等向量:方向______且模______的向量. (3)共线向量定理 对空间任意两个向量a,b(b≠0),a∥b的充要条件是______________________________. 推论如图所示,点P在l上的充要条件是:eq\o(OP,\s\up6(→))=eq\o(OA,\s\up6(→))+ta① 其中a叫直线l的方向向量,t∈R,在l上取eq\o(AB,\s\up6(→))=a,则①可化为eq\o(OP,\s\up6(→))=___________________或eq\o(OP,\s\up6(→))=(1-t)eq\o(OA,\s\up6(→))+teq\o(OB,\s\up6(→)). (4)共面向量定理 如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在惟一的有序实数对(x,y),使p=xa+yb,推论的表达式为eq\o(MP,\s\up6(→))=xeq\o(MA,\s\up6(→))+yeq\o(MB,\s\up6(→))或对空间任意一点O有,eq\o(OP,\s\up6(→))=__________________或eq\o(OP,\s\up6(→))=xeq\o(OA,\s\up6(→))+yeq\o(OB,\s\up6(→))+zeq\o(OM,\s\up6(→)),其中x+y+z=____. 2.空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=____________________________,把{a,b,c}叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a,b,在空间任取一点O,作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,则________叫做向量a与b的夹角,记作________,其范围是________________,若〈a,b〉=eq\f(π,2),则称a与b______________,记作a⊥b. ②两向量的数量积 已知两个非零向量a,b,则______________________叫做向量a,b的数量积,记作________,即______________________________. (2)空间向量数量积的运算律 ①结合律:(λa)·b=____________________; ②交换律:a·b=________; ③分配律:a·(b+c)=________________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 若a=(a1,a2,a3),b=(b1,b2,b3), 则a·b=____________________. (2)共线与垂直的坐标表示 设a=(a1,a2,a3),b=(b1,b2,b3), 则a∥b(b≠0)⇔____________⇔________,__________,________________, a⊥b⇔________⇔_________________________________(a,b均为非零向量). (3)模、夹角和距离公式 设a=(a1,a2,a3),b=(b1,b2,b3), 则|a|=eq\r(a·a)=_____________________________________________________________, cos〈a,b〉=eq\f(a·b,|a||b|)=_________________________________________________________. 若A(a1,b1,c1),B(a2,b2,c2), 则|eq\o(AB,\s\up6(→))|=__________________________________________________________________. 自我检测 1.若a=(2x,1,3),b=(1,-2y,9),且a∥b,则() A.x=1,y=1 B.x=eq\f(1,2),y=-eq\f(1,2) C.x=eq\f(1,6),y=-eq