预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

向量中一些常用的结论 (1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用; (2),特别地, 当同向或有; 当反向或有; 当不共线(这些和实数比较类似). (3)在中,①若,则其重心的坐标为。如 若⊿ABC的三边的中点分别为(2,1)、(-3,4)、(-1,-1),则⊿ABC的重心的坐标为_______ ②为的重心,特别地为的重心; ③为的垂心; ④向量所在直线过的内心(是的角平分线所在直线); ⑤的内心; (4)若P分有向线段所成的比为,点为平面内的任一点,则,特别地为的中点; (5)向量中三终点共线存在实数使得且 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)是的重心. 证法1:设 是的重心. 证法2:如图 三点共线,且分 为2:1 是的重心 (2)为的垂心. 证明:如图所示O是三角形ABC的垂心,BE垂直AC,AD垂直BC,D、E是垂足. 同理, 为的垂心 (3)设,,是三角形的三条边长,O是ABC的内心 为的内心. 证明:分别为方向上的单位向量, 平分, ),令 () 化简得 (4)为的外心。