预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

几何分布的定义以及期望与方差 几何分布(Geometricdistribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细的说,是:前k-1次皆失败,第k次成功的概率。 公式: 它分两种情况: 1.得到1次成功而进行,n次伯努利实验,n的概率分布,取值范围为『1,2,3,...』; 2.m=n-1次失败,第n次成功,m的概率分布,取值范围为『0,1,2,3,...』. 由两种不同情况而得出的期望和方差如下: , ; , 。 概率为p的事件A,以X记A首次发生所进行的试验次数,则X的分布列: , 具有这种分布列的随机变量X,称为服从参数p的几何分布,记为X~Geo(p)。 几何分布的期望 ,方差 。 高中数学教科书新版第三册(选修II)比原来的修订本新增加随机变量的几何分布,但书中只给出了结论:(1),(2),而未加以证明。本文给出证明,并用于解题。 (1)由,知 下面用倍差法(也称为错位相减法)求上式括号内的值。记 两式相减,得 由,知,则,故 从而 也可用无穷等比数列各项和公式(见教科书91页阅读材料),推导如下: 记 相减, 则 还可用导数公式,推导如下: 上式中令,则得 (2)为简化运算,利用性质来推导(该性质的证明,可见本刊6页)。可见关键是求。 对于上式括号中的式子,利用导数,关于q求导:,并用倍差法求和,有 则,因此 利用上述两个结论,可以简化几何分布一类的计算问题。 例1.一个口袋内装有5个白球和2个黑球,现从中每次摸取一个球,取出黑球就放回,取出白球则停止摸球。求取球次数的数学期望与方差。 解:每次从袋内取出白球的概率,取出黑球的概率。的取值为1,2,3,……,有无穷多个。我们用表示前k-1次均取到黑球,而第k次取到白球,因此 。可见服从几何分布。所以 例2.某射击运动员每次射击击中目标的概率为p(0<p<1)。他有10发子弹,现对某一目标连续射击,每次打一发子弹,直到击中目标,或子弹打光为止。求他击中目标的期望。 解:射手射击次数的可能取值为1,2,…,9,10。 若,则表明他前次均没击中目标,而第k次击中目标;若k=10,则表明他前9次都没击中目标,而第10次可能击中也可能没击中目标。因此的分布列为 用倍差法,可求得 所以 说明:本例的试验是有限次的,并且,不符合几何分布的概率特征,因而随机变量不服从几何分布,也就不能套用几何分布的相关公式。但求解过程可参照相关公式的推导方法。