预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第二章推理与证明讲义 2.1合情推理与演绎推理 学习目标: 1.了解合情推理的含义,能利用归纳和类比进行简单的推理; 2.了解演绎推理的含义,掌握演绎推理的基本模式,能利用“三段论”进行简单的推理. 重点:用归纳和类比进行推理,做出猜想;用“三段论”证明问题. 难点:用归纳和类比进行合情推理,做出猜想。 学习策略: ①合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势 ②合情推理中的归纳、类比都是具有创造性的或然推理.不论是由大量的实例,经过分析、概括、发现规律的归纳,还是由两系统的已知属性,通过比较、联想而发现未知属性的类比,它们的共同点是,结论往往超出前提所控制的范围,所以它们是“开拓型”或“发散型”的思维方法.也正因为结论超出了前提的管辖范围,前提也就无力保证结论必真,所以归纳类比都是或然性推理. ③演绎推理所得的结论完全蕴含于前提之中,所以它是“封闭型”或“收敛型”的思维方法.只要前提真实,逻辑形式正确,结论必然是真实的. 知识要点梳理 知识点一:推理的概念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论. 知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。其中归纳推理和类比推理是最常见的合情推理。 1.归纳推理 (1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。 (2)一般模式:部分整体,个体一般 (3)一般步骤: ①通过观察个别情况发现某些相同性质; ②从已知的相同的性质中猜想出一个明确表述的一般性命题; ③检验猜想. (4)归纳推理的结论可真可假 归纳推理一般都是从观察、实验、分析特殊情况开始,提出有规律性的猜想;一般地,归纳的个别情况越多,就越具有代表性,推广的一般性命题就越可靠.由于归纳推理的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以归纳推理所得的结论不一定是正确的. 2.类比推理 (1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比). (2)一般模式:特殊特殊 (3)类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象. (4)一般步骤: ①找出两类对象之间的相似性或一致性; ②用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想); ③检验猜想. (5)类比推理的结论可真可假 类比推理中的两类对象是具有某些相似性的对象,同时又应是两类不同的对象;一般情况下,如果类比的相似性越多,相似的性质与推测的性质越相关,那么类比得出的命题就越可靠.类比结论具有或然性,所以类比推理所得的结论不一定是正确的。 知识点三:演绎推理 (1)定义:从一般性的原理出发,按照严格的逻辑法则,推出某个特殊情况下的结论的推理,叫做演绎推理.简言之,演绎推理是由一般到特殊的推理. (2)一般模式:“三段论”是演绎推理的一般模式,常用的一种格式 大前提——已知的一般原理; 小前提——所研究的特殊情况; 结论——根据一般原理,对特殊情况作出的结论. (3)用集合的观点理解“三段论” 若集合的所有元素都具有性质,是的子集,那么中所有元素都具有性质 (4)演绎推理的结论一定正确 演绎推理是一个必然性的推理,因而只要大前提、小前提及推理形式正确,那么结论一定是正确的,它是完全可靠的推理。 规律方法指导 合情推理与演绎推理的区别与联系 (1)从推理模式看: ①归纳推理是由特殊到一般的推理. ②类比推理是由特殊到特殊的推理. ③演绎推理是由一般到特殊的推理. (2)从推理的结论看: ①合情推理所得的结论不一定正确,有待证明。 ②演绎推理所得的结论一定正确。 (3)总体来说,从推理的形式和推理的正确性上讲,二者有差异;从二者在认识事物的过程中所发挥的作用的角度考虑,它们又是紧密联系,相辅相成的。合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的;演绎推理可以验证合情推理的正确性,合情推理可以为演绎推理提供方向和思路. 经典例题透析 类型一:归纳推理 1.用推理的形式表示数列的前项和的归纳过程. 举一反三:【变式1】用推理的形式表示等差数列1,3,5,…,(2-1),…的前项和的归纳过程. 【变式2】设,计算的值,同时归纳结果所具有的性质,并用验证猜想的结论