预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

二、烃类热裂解原理 1.烃类的热裂解反应 裂解过程中的主要中间产物及其变化可以用图5-1-01作一概括说明。按反应进行的先后顺序,可以将图5-1-01所示的反应划分为一次反应和二次反应,一次反应即由原料烃类热裂解生成乙烯和丙烯等低级烯烃的反应。二次反应主要是指由一次反应生成的低 图5-1-01烃类裂解过程中一些主要产物变化示意图 级烯烃进一步反应生成多种产物,直至最后生成焦或碳的反应。二次反应不仅降低了低级烯烃的收率,而且还会因生成的焦或碳堵塞管路及设备,破坏裂解操作的正常进行,因此二次反应在烃类热裂解中应设法加以控制。 现将烃类热裂解的一次反应分述如下。 (1)烷烃热裂解烷烃热裂解的一次反应主要有: ①脱氢反应:R-CH2-CH3<==>R-CH=CH2+H2 ②断链反应:R-CH2-CH2-R’→R-CH=CH2+R’H 不同烷烃脱氢和断链的难易,可以从分子结构中键能数值的大小来判断。一般规律是同碳原子数的烷烃,C-H键能大于C-C键能,故断链比脱氢容易;烷烃的相对稳定性随碳链的增长而降低。因此,分子量大的烷烃比分子量小的容易裂解,所需的裂解温度也就比较低;脱氢难易与烷烃的分子结构有关,叔氢最易脱去,仲氢次之,伯氢最难;带支的C-C键或C-H键,较直链的键能小,因此支链烃容易断链或脱氢;裂解是一个吸热反应,脱氢比断链需供给更多的热量;脱氢为一可逆反应,为使脱氢反应达到较高的平衡转化率,必须采用较高的温度;低分子烷烃的C-C键在分子两端断裂比在分子链中央断裂容易,较大分子量的烷烃则在中央断裂的可能性比在两端断裂的大。 (2)环烷烃热裂解环烷烃热裂解时,发生断链和脱氢反应,生成乙烯、丁烯、丁二烯和芳烃等烃类;带有侧链的环烷烃,首先进行脱烷基反应,长侧链先在侧链中央的C-C链断裂一直进行到侧链全部与环断裂为止,然后残存的环再进一步裂解,裂解产物可以是烷烃,也可以是烯烃;五碳环比六碳环稳定,较难断裂;由于拌有脱氢反应,有些碳环,部分转化为芳烃;因此,当裂解原料中环烷烃含量增加时,乙烯收率会下降,丁二烯、芳烃的收率则会有所增加。 (3)芳烃热裂解芳烃的热稳定性很高,在一般的裂解温度下不易发生芳烃开环反应,但能进行芳烃脱氢缩合、脱氢烷基化和脱氢反应: 脱氢缩合:如: 继续脱氢缩合生成焦油直至结焦。 断侧链反应,如: 又如: 脱氢反应,如: (4)烯烃热裂解天然石油中不含烯烃,但石油加工所得的各种油品中则可能含有烯烃,它们在热裂解时也会发生断链和脱氢反应,生成低级烯烃和二烯烃: 它们除继续发生断链及脱氢外,还可发生聚合、环化、缩合、加氢和脱氢等反应,结果生成焦油或结焦。 烯烃脱氢反应所需温度比烷烃更高,在通常的热裂解温度下,反应速度甚慢,因此生成的炔烃甚少。此外,低分子量的烷烃和烯烃在通常的热裂解温度下还会发生裂解,生成碳和氢气。虽然反应自发性很大(可用ΔG°判断),但反应速度常数甚小,因此这类反应不明显。 各种烃类热裂解反应规律可简单地归纳为:直链烷烃裂解易得乙烯、丙烯等低级烯烃,分子量越小,烯烃总收率越高;异构烷烃裂解时烯烃收率比同碳数直链烷烃低,随着分子量增大,这种差别减小;环烷烃热裂解易得芳烃,含环烷烃较多的裂解原料,裂解产物中丁二烯、芳烃的收率较高,乙烯收率则较低;芳烃不易裂解为烯烃,主要发生侧链断裂脱氢和脱氢缩合反应;烯烃热裂解易得低级烯烃,少量脱氢生成二烯烃,后者能进一步反应生成芳烃和焦;在高温下,烷烃和烯烃还会发生分解反应生成少量碳。各种烃类热裂解的易难顺序可表示为: 正构烷烃>异构烷烃>环烷烃(C6>C5)>芳烃 2烃类热裂解反应机理 经过长期研究,已明确烃类热裂解反应机理属自由基链反应机理,反应分链引发、链增长(又称链传递)和链终止3个过程,为一连串反应。现以乙烷和丙烷裂解为例,说明热裂解反应机理。 乙烷的链反应经历以下7个步骤: 然后发生链转移和链增长 链终止是自由基相互结合 研究结果表明,乙烷裂解主要产物是氢、甲烷和乙烯,这与反应机理是相符合的。乙烷裂解的特点是引发形成的乙基自由基CH3-C·H2产生自由基H·,而自由基CH3仅在起始阶段少量生成。 丙烷热裂解时,自由基H·和C·H3在链增长阶段都起着很大作用。 链引发 链增长.形成异或正丙基自由基 链终止 丙烷初始裂解所得产物与反应机理相符。 3.烃类热裂解反应动力学 经研究烃类热裂解的一次反应可视作一级反应: r=-dc/dt=kc 式中:r—反应物的消失速度,mol/(L·s); c—反应物浓度,mol/L; t—反应时间,s; k—反应速度常数,s-1。 当反应物浓度由C0→C,反应时间由0→t,将上式积分可得: ln[C0/C]=kt 以转化率x表示时,因裂解反应是分子数增加的反应,故反应浓度可表达为: c=C0(1