预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

例谈梯形中的常用辅助线 在解(证)有关梯形的问题时,常常要添作辅助线,把梯形问题转化为三角形或平行四边形问题。本文举例谈谈梯形中的常用辅助线,以帮助同学们更好地理解和运用。 一、平移 1、平移一腰:从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形。 [例1]如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。 图1 析解:过点B作BM//AD交CD于点M,则梯形ABCD转化为△BCM和平行四边形ABMD。在△BCM中,BM=AD=4,CM=CD-DM=CD-AB=8-3=5,所以BC的取值范围是: 5-4<BC<5+4,即1<BC<9。 2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。 [例2]如图2,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,连接EF,求EF的长。 图2 析解:过点E分别作AB、CD的平行线,交BC于点G、H,可得 ∠EGH+∠EHG=∠B+∠C=90° 则△EGH是直角三角形 因为E、F分别是AD、BC的中点,容易证得F是GH的中点 所以 3、平移对角线:过梯形的一个顶点作对角线的平行线,将已知条件转化到一个三角形中。 [例3]如图3,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=,求证:AC⊥BD。 图3 析解:过点C作BD的平行线交AD的延长线于点E,易得四边形BCED是平行四边形,则DE=BC,CE=BD=,所以AE=AD+DE=AD+BC=3+7=10。在等腰梯形ABCD中,AC=BD=,所以在△ACE中,,从而AC⊥CE,于是AC⊥BD。 [例4]如图4,在梯形ABCD中,AD//BC,AC=15cm,BD=20cm,高DH=12cm,求梯形ABCD的面积。 图4 析解:过点D作DE//AC,交BC的延长线于点E,则四边形ACED是平行四边形,即。 所以 由勾股定理得 (cm) (cm) 所以,即梯形ABCD的面积是150cm2。 二、延长 即延长两腰相交于一点,可使梯形转化为三角形。 [例5]如图5,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的长。 图5 析解:延长BA、CD交于点E。在△BCE中,∠B=50°,∠C=80°。 所以∠E=50°,从而BC=EC=5 同理可得AD=ED=2 所以CD=EC-ED=5-2=3 三、作对角线 即通过作对角线,使梯形转化为三角形。 [例6]如图6,在直角梯形ABCD中,AD//BC,AB⊥AD,BC=CD,BE⊥CD于点E,求证:AD=DE。 图6 析解:连结BD,由AD//BC,得∠ADB=∠DBE;由BC=CD,得∠DBC=∠BDC。所以∠ADB=∠BDE。又∠BAD=∠DEB=90°,BD=BD,所以Rt△BAD≌Rt△BED,得AD=DE。 四、作梯形的高 1、作一条高,从底边的一个端点作另一条底边的垂线,把梯形转化为直角三角形或矩形。 [例7]如图7,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE是等腰梯形。 图7 析证:过点D作DG⊥AB于点G,则易知四边形DGBC是矩形,所以DC=BG。 因为AB=2DC,所以AG=GB。 从而DA=DB,于是∠DAB=∠DBA。 又EF//AB,所以四边形ABFE是等腰梯形。 2、作两条高:从同一底边的两个端点作另一条底边的垂线,把梯形转化为两个直角三角形和一个矩形。 [例8]如图8,在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。 图8 析证:作AE⊥BC于E,作DF⊥BC于F,则易知AE=DF。在Rt△ABE和Rt△DCF中,因为AB>CD,AE=DF。 所以由勾股定理得BE>CF。 即BF>CE。在Rt△BDF和Rt△CAE中 由勾股定理得BD>AC 五、作中位线 1、已知梯形一腰中点,作梯形的中位线。 [例9]如图9,在梯形ABCD中,AB//DC,O是BC的中点,∠AOD=90°,求证:AB+CD=AD。 图9 析证:取AD的中点E,连接OE,则易知OE是梯形ABCD的中位线,从而OE=(AB+CD)① 在△AOD中,∠AOD=90°,AE=DE 所以 ② 由①、②得AB+CD=AD。 2、已知梯形两条对角线的中点,连接梯形一顶点与一条对角线中点,并延长与底边相交,使问题转化为三角形中位线。 [例10]如图10,在梯形ABCD中,AD//BC,E、F分别是BD、AC的中点,求证:(1)EF//AD;(2)。 图10 析证:连接DF,并延长交BC