(江苏专用)高考数学 专题8 立体几何与空间向量 61 空间角与空间距离的求解 理-人教版高三全册数学试题.doc
宛菡****魔王
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
(江苏专用)高考数学 专题8 立体几何与空间向量 61 空间角与空间距离的求解 理-人教版高三全册数学试题.doc
【步步高】(江苏专用)2017版高考数学专题8立体几何与空间向量61空间角与空间距离的求解理训练目标(1)会求线面角、二面角;(2)会解决简单的距离问题.训练题型(1)求直线与平面所成的角;(2)求二面角;(3)求距离.解题策略利用定义、性质去“找”所求角,通过解三角形求角的三角函数值,尽量利用特殊三角形求解.1.(2015·上海闵行区三模)如图,在底面是边长为a的正方形的四棱锥P-ABCD中,已知PA⊥平面ABCD,且PA=a,则直线PB与平面PCD所成的角的余弦值为________.2.(2015·邯
(江苏专用)高考数学专题复习 专题8 立体几何与空间向量 第53练 空间角与距离练习 理-人教版高三全册数学试题.doc
(江苏专用)2018版高考数学专题复习专题8立体几何与空间向量第53练空间角与距离练习理训练目标(1)会求线面角、二面角;(2)会解决简单的距离问题.训练题型(1)求直线与平面所成的角;(2)求二面角;(3)求距离.解题策略利用定义、性质去“找”所求角,通过解三角形求角的三角函数值,尽量利用特殊三角形求解.1.如图所示,已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,点A1在底面ABC上的投影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为________.2.已知正三棱柱ABC-A1B1C
(江苏专用)高考数学 专题8 立体几何与空间向量 62 向量法求解立体几何问题 理-人教版高三全册数学试题.doc
【步步高】(江苏专用)2017版高考数学专题8立体几何与空间向量62向量法求解立体几何问题理训练目标会用空间向量解决立体几何的证明、求空间角、求距离问题.训练题型(1)用空间向量证明平行与垂直;(2)用空间向量求空间角;(3)求长度与距离.解题策略(1)选择适当的空间坐标系;(2)求出相关点的坐标,用坐标表示直线的方向向量及平面的法向量;(3)理解并记住用向量表示的空间角和距离的求解公式;(4)探索性问题,可利用共线关系设变量,引入参数,列方程求解.1.如图所示,已知正方形ABCD和矩形ACEF所在的平面
(江苏专用)高考数学专题复习 专题8 立体几何与空间向量 第53练 空间角与距离练习题 理-人教版课.doc
(江苏专用)2018版高考数学专题复习专题8立体几何与空间向量第53练空间角与距离练习理训练目标(1)会求线面角、二面角;(2)会解决简单的距离问题.训练题型(1)求直线与平面所成的角;(2)求二面角;(3)求距离.解题策略利用定义、性质去“找”所求角,通过解三角形求角的三角函数值,尽量利用特殊三角形求解.1.如图所示,已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,点A1在底面ABC上的投影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为________.2.已知正三棱柱ABC-A1B1C
(浙江专用)高考数学 专题七 立体几何 第55练 空间角与空间距离的求解练习-人教版高三全册数学试题.doc
【步步高】(浙江专用)2017年高考数学专题七立体几何第55练空间角与空间距离的求解练习训练目标(1)会求线面角、二面角;(2)会解决简单的距离问题.训练题型(1)求直线与平面所成的角;(2)求二面角;(3)求距离.解题策略利用定义、性质去“找”所求角,通过解三角形求角的三角函数值,尽量利用特殊三角形求解.一、选择题1.(2015·上海闵行区三模)如图,在底面是边长为a的正方形的四棱锥P-ABCD中,已知PA⊥平面ABCD,且PA=a,则直线PB与平面PCD所成的角的余弦值为()A.eq\f(1,2)