预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共31页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

3.3.2简单的线性规划问题zxxk2二、基本概念解:按甲、乙两种产品分别生产x、y件,目标函数为Z,那么:解方程组 ,得N点的坐标为(2,3)。 所以一、线性规划在实际中的应用: 二、例题解:设每天食用xkg食物A,ykg食物B,总成本为z,那么M点是两条直线的交点,解方程组12某工厂现有两种大小不同规格的钢板可截成A、B、C三种规格,每张钢板可同时截得三种规示:格的小钢板的块数如下表所xx解:设生产甲种肥料x车皮、乙种肥料y车皮,能够产生利润Z万元。目标函数为Z=x+0.5y,可行域如图:例7在上一节例4(P85)中,若生产1车皮甲种肥料,产生的 利润为10000元;生产1车皮乙种肥料,产生的利润为5000元, 那么分别生产甲、乙两种肥料各多少车皮,能够产生最大利润?x即先求非整数条件下的最优解,调整Z的值使不定方程Ax+By=Z存在最大(小)的整点值,最后筛选出整点最优解.例8、某人准备投资1200万元兴办一所完全中学。对教育市场进行调查后,他得到了下面的数据表格(以班级为单位)把上面四个不等式合在一起, 得到y 咖啡馆配制两种饮料.甲种饮料每杯含奶粉9g、咖啡4g、糖3g,乙种饮料每杯含奶粉4g、咖啡5g、糖10g.已知每天原料的使用限额为奶粉3600g,咖啡2000g糖3000g,如果甲种饮料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料的使用限额内饮料能全部售出,每天应配制两种饮料各多少杯能获利最大?解:设每天应配制甲种饮料x杯,乙种饮料y杯,则巩固练习二四.课时小结二、练习1.解:作出平面区域2.解:作出平面区域