预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

向量加法运算及其几何意义 知识目标: 1、掌握向量的加法运算,并理解其几何意义; 2、会用向量加法的三角形法则和平行四边形法则作两个向量的 和,培养数形结合解决问题的能力; 3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向 量加法运算的交换律和结合律,并会用它们进行向量计算, 渗透类比的数学方法; 教学重点与难点: 教学重点:会用向量加法的三角形法则和平行四边形法则作两个 向量的和向量. 教学难点:理解向量加法的定义. 教学过程 一、复习引入 问题1:向量的定义以及相等向量的定义是什么? 1、什么叫向量? 2、长度为零的向量叫做。零向量的方向具有性。 3、长度等于一个单位的向量叫做。 4、方向相同或相反的非零向量叫做,也叫。 5、长度相等且方向相同的向量叫做。 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 问题2:数能进行运算,向量是否也能进行运算呢? 二、探究新知 活动一 元旦假期将到,某人计划外出去三亚旅游,从重庆(记作A)到昆明(记作B),再从B到三亚(记作C),这两次的位移和可以用哪个向量表示? 形成概念: 向量加法的定义 求两个向量和的运算,叫做向量的加法。 向量加法的法则 (1)向量加法的三角形法则 如图3,已知非零向量a、b,在平面内任取一点A,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b=+=.这种求向量和的方法叫做向量加法的三角形法则 (2)向量加法的平行四边形法则 图4 如图4,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线就是a与b的和.把这种求向量和的方法叫做向量加法的平行四边形法则. 问题4:对于零向量与任一向量的加法,结果又是怎样的呢? 对于零向量与任意向量a,我们规定:a+0=0+a=a. 总结:三角形法则: ①要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量. ②适用于任何两个非零向量求和; ②位移的合成可以看作向量加法三角形法则的物理模型. 平行四边形法则: ①适用于两个不共线向量求和,且两向量要共起点; ②力的合成可以看作向量加法平行四边形法则的物理模型. 三、应用举例 例1如图5,已知向量a、b,求作向量a+b a b 图5 作法1(三角形法则): 作法2(平行四边形法则): 探究合作: ||a|-|b||,|a+b|,|a|,|b|存在着怎样的关系? (1)当向量与不共线时,|+|||+||; (2)当与同向时,则+、、(填同向或反向),且|+|||+||;当与反向时,若||>||,则+的方向与相同,且|+|||-||;若||<||,则+的方向与相同,且|+|||-||. 结论:一般地: 四、练习巩固: 教材84页1、2题 五、小结 1.向量加法的定义 2.向量加法的两种法则: (1)三角形法则:首尾相接 (2)平行四边形法则:作平移,共起点,四边形,连对角 六、作业: 高考调研课时作业十七