预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

实际问题与二元一次方程组(第一课时)教学设计 学情分析: 本节内容的重点是用二元一次方程组刻画现实世界的实际问题,分析问题中的各个量的关系,列出方程组.难点是将实际问题转化成二元一次方程组的数学模型.应先让学生独立分析问题中的数量关系,并进行独立思考、相互交流. 课程目标: (一)知识与技能目标 1.会用二元一次方程组解决实际问题.毛 2.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程组解决现实问题的意识和能力. 3.将解方程组的技能训练与实际问题的解决融为一体,进一步提高解方程组的技能. 4.加强学生列方程组的技能训练,形成解决实际问题的一般性策略. (二)过程与方法目标 让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型,培养学生数学应用能力. (三)情感态度与价值观目标 1.通过列方程组解决实际问题,培养应用数学意识,提高学习数学的趣味性、现实性、科学性. 2.培养学生的创新、开拓、克服学习中困难的科学精神. 3.鼓励学生合作交流,培养学生的团体精神. 教学重点与难点: 重点:能根据题意列二元一次方程组;根据题意找出等量关系; 难点:正确发找出问题中的两个等量关系。 教学方法: 探究式的学习 课的类型: 新授课 教学过程: 一、创设情境,导入新课 (活动)1.学生看屏幕上的一段话。教师语:刚才看了一段话,同学们要做最好的自己。 2.复习:二元一次方程组的解法。 教师语:今天我们来学习二元一次方程组的应用,即实际问题与二元一次方程组。 二、师生互动,课堂探究 (一)提出问题,引发讨论 问题:养牛场原有30只母牛和15只小牛,1天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时1天约需用饲料940kg.饲养员李大叔估计平均每只母牛1天约需饲料18~20kg,每只小牛1天约需饲料7~8kg,你能否通过计算检验他的估计? (二)导入知识,解释疑难 问题:(1)如何理解“通过计算检验他的估计”这句话? (2)题目中哪些是已知量,哪些是未知量? (3)题目中有几个等量关系? 分析:设平均每只母牛和每只小牛1天各约需饲料xkg和ykg.则30只母牛1天约需饲料30xkg,15只小牛1天约需饲料15ykg,12只母牛1天约需饲料12xkg,5只小牛1天约需饲料5ykg.30只母牛和15只小牛1天约需饲料(30x+15y)kg,增加12只母牛和5只小牛1天约需饲料(12x+5y)kg.根据两种情况的饲料用量,可以列出方程组  求出这个方程组的解后,就可以验证饲养员李大叔的估计是否正确. 解:设平均每只母牛和每只小牛1天各需饲料xkg和ykg,根据题意可得 ,解这个方程组,得 所以平均每只母牛1天约需饲料20kg,每只小牛1天约需饲料5kg,故饲养员李大叔对母牛的食量估计正确,对小牛的食量估计错误(偏高). (三)思考:解二元一次方程组应用题的一般步骤是什么?(动画演示) 三、举一反三,拓展提升 1.(看看谁的脑瓜反应快) 长18米的钢材,要锯成10段,而每段的长只能取“1米或2米”两种型号之一,小明估计2米的有3段,你们认为他估计的是否准确?2米的和1米的钢材各应取多少段? (解答见课件) 2.(牛刀小试) 食堂有一批粮食,若每天用去140千克,按预计天数计算就少50千克;若每天用去120千克,那么到期后还可剩余70千克.估计食堂现有存量700~800千克,可供应一周.通过计算检验估计是否准确? (解答见课件) 3.(相信自己) 某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅和2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅和1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅和1个小餐厅分别可供多少名学生就餐?(2)若7个餐厅同时开放,请估计一下能否供应全校的5500名学生就餐?说明理由. (解答见课件) 四、及时总结,提高能力 问题:学了本节课,你有什么收获?请畅所欲言,与同学们讨论讨论,并积极发表你的见解。 1.列方程组解决实际问题的一般步骤。(动画演示) 2.含有“估计”类型的题目:先算,再回答估计的情况:估计准确、偏高、偏低. 五、作业布置,课外提高 大册子:71---72页,1---9题。 六、课外思考,发散思维 有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,3辆大车与5辆小车一次可以运货多少吨? 七、板书设计 实际问题与二元一次方程组(第一课时) 1.解二元一次方程组应用题的一般步骤; 2.含有“估计”类型的题目:先算,再回答估计的情况:估计准确、偏高、偏低. 八、课后反思