预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2019届高三数学精品复习之排列组合及二项式定理 1.熟悉排列数、组合数的计算公式;了解排列数、组合数的一些性质:①, 由此可得:,,为相应的数列求和创造了条件; ②;③,由此得:; [举例]=___________ 解析:原式=;记,数列{}的前19项和即为所求。记数列{}的前项和为;该数列的求和办法有很多种,但都比较烦琐,这里介绍用组合数性质求解:注意到=,[来源:学*科*网Z*X*X*K] …==1330; [巩固1]设且,则等于() (A)(B)(C)(D) [巩固2]已知的展开式中第9项、第10项、第11项的二项式系数成等差数列,则n=____ 2.解排列组合应用题首先要明确需要完成的事件是什么;其次要辨析完成该事件的过程:分类相加(每一类方法都能独立地完成这件事),分步相乘(每一步都不能完成事件,只有各个步骤都完成了,才能完成事件);较为复杂的事件往往既要分类,又要分步(每一类办法又都需分步实施);分类讨论是研究排列组合问题的重要思想方法之一,分类时要选定讨论对象、确保不重不漏。 [举例]设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中的最大数,则不同的选择方法共有:()种 A.50种B.49种C.48种D.47种 解析:本题要完成的事件是:构造集合I的两个非空子集;要求:B中最小的数大于A中的最大数;显然B中的最小数不可能是1,以下分类:①B中的最小数是2,B中可以有{2,3,4,5}中的1个元素、2个元素、3个元素或4个元素,所有可能的情况有:=8种,此时A只有{1}这1种;集合A、B都确定了,才算完成事件,∴完成事件有8×1=8中方法;②B中的最小数是3,B中可以有{3,4,5}中的1个元素、2个元素或3个元素,所有可能的情况有:=4种,此时A中可以有{1,2}中的有1个元素或2个元素,有=3种,∴完成事件有4×3=12种方法;③B中的最小数是4,B中可以有{4,5}中的1个元素或2个元素,所有可能的情况有2种,此时A中可以有{1,2,3}中的有1个元素、2个元素或3个元素,有=7种,∴完成事件有2×7=14种方法;④B中的最小数是5,只有{5}这1种,此时A中可以有{1,2,3,4}中的有1个元素、2个元素、3个元素或4个元素,有=15种,∴完成事件有1×15=15种方法;故完成事件的方法总数为:8+12+14+15=49,选B。 [巩固]从集合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任选2个元素排成一排(字母和数字均不能重复).每排中字母O,Q和数字0至多只能出现一个的不同排法种数是_________.(用数字作答). 3.对“按某种要求将个元素排到个位置”的问题,首先要确定研究的“抓手”:抓住元素还是抓住位置研究;再按特殊元素(特殊位置)优先的原则进行。 [举例]从5位同学中选派4位同学在星期四到星期日参加公益活动,每人一天,其中甲不能安排在星期六,乙不能安排在星期天,则不同的选派方法共有种。 解析:本题要完成的事件是:从5个不同的元素中选出4个元素,并按要求排在四个不同的位置。本题不宜抓住元素研究,因为每一个元素都不一定被选到,而每一个位置上都一定要有一个元素,故应该抓住位置研究。先看星期六(特殊位置,优先):不能安排甲,可以安排乙(特殊元素,优先)或除甲乙之外的一个同学,①安排乙:其它位置可任意安排,有[来源:学科网ZXXK] 种,②不安排乙:可以安排其他三位同学,星期日可以安排甲或另外两个同学,星期四、五可任意安排,有种,故不同的选派方法共有:+=78种。 [巩固]四个不同的小球全部放入编号为1、2、3、4的四个盒中。(1)恰有两个空盒的放法有种;(2)甲球只能放入2号或3好盒,而乙球不能放入4号盒的不同放法有种。 4.解决排列组合问题还要遵循“先选后排”、“正难则反”(即去杂法)等原则;[来源:学。科。网Z。X。X。K] [举例]某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“”到“”共个号码.公司规定:凡卡号的后四位带有数字“”或“”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为()(福建文科第12题) A. B. C. D. 解析:直接考虑带有数字“”或“”的情况太多,逐一讨论非常麻烦;考虑事件的反面:后四位不带有数字“”或“”的,有84个,故“优惠卡”的个数为104-84=。 [巩固]四位同学乘坐一列有6节车厢的动车组,则他们至少有两人在同一节车厢的的情况共有种?(用数字作答). 5.熟悉几个排列组合问题的基本模型:①部分元素“相邻”(捆绑法),②部分元素“不相邻”(用要求“不相邻”的元素插空),③部分元素有顺序(个元素全排,其中个元素要求按给定顺序排列的方法数为=),④平均分组(个元素平均分成组的方法