预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

机组最优化问题的改进遗传算法 Abstract Theoptimaloperationandcontrolofpowergenerationunitsiscriticalinensuringefficientandreliablepowergeneration.Animprovedgeneticalgorithmisproposedforsolvingtheunitoptimizationproblem.Theproposedalgorithmisdesignedtoimprovetheconvergencespeedandsolutionaccuracyofthetraditionalgeneticalgorithm.Thealgorithmisevaluatedusingtestcases,anditsresultsarecomparedwithotheroptimizationalgorithms.Theresultsshowthattheproposedalgorithmisabletoprovidebettersolutionsmoreefficientlythanothermethods. Introduction Powergenerationunitsarevitalcomponentsofpowersystems.Theoptimaloperationandcontroloftheseunitsarecriticalinensuringefficientandreliablepowergeneration.Unitoptimizationinvolvesfindingtheoptimaloperatingpointoftheunit,whichminimizesthecostofgeneratingpowerwhilemeetingdemandandsystemconstraints.Unitoptimizationisacomplexandchallengingproblem,duetothenonlinearity,uncertainandnon-stationarityoftheunit,aswellasthepresenceofmultipleobjectivesandconstraints. Existingoptimizationalgorithms,suchaslinearprogramming,non-linearprogramming,anddynamicprogramming,havebeenusedtosolvetheunitoptimizationproblem.However,thesemethodssufferfromhighcomputationcomplexityandlackofglobaloptimalsolutions.Geneticalgorithms(GA)haveemergedasapowerfultoolforsolvingthesetypesofcomplexoptimizationproblems. Geneticalgorithmsareatypeofevolutionaryalgorithmthatmimicstheprocessofnaturalselection.Theyarebasedontheprinciplesofgeneticsandevolution,andaremodeledaftertheprocessofnaturalselection.GAshavebeensuccessfullyusedtosolveawiderangeofoptimizationproblems,duetotheirabilitytohandlenon-linear,non-convex,andmulti-objectiveproblems. Inthispaper,animprovedgeneticalgorithmisproposedforsolvingtheunitoptimizationproblem.Theproposedalgorithmisdesignedtoimprovetheconvergencespeedandsolutionaccuracyofthetraditionalgeneticalgorithm.Thealgorithmisevaluatedusingtestcases,anditsresultsarecomparedwithotheroptimizationalgorithms. TheProposedAlgorithm Theproposedalgorithmisanimprovedgeneticalgorithmthatuses