预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

改进的SIFT特征人脸识别方法ADSIFT ADSIFT:AnImprovedSIFT-basedFaceRecognitionMethod Abstract: Facerecognitionisachallengingtaskincomputervision,withnumerousreal-worldapplications.Inrecentyears,thescale-invariantfeaturetransform(SIFT)algorithmhasgainedsignificantpopularityduetoitsrobustnessagainstvariationsinlighting,pose,andocclusion.However,itstillfaceslimitationswhenappliedtofacerecognitiontasks,includinglow-dimensionalfeaturerepresentationandcomputationalcomplexity.Toaddresstheseissues,thispaperproposesanimprovedSIFT-basedfacerecognitionmethodcalledADSIFT.ADSIFTenhancesthediscriminativepowerofSIFTfeaturesbyincorporatingadaptiveselectionanddimensionalityreductiontechniques.ExperimentalresultsdemonstratethatADSIFTachievessuperiorperformancecomparedtoconventionalSIFTintermsofrecognitionaccuracyandcomputationspeed. 1.Introduction Facerecognitionhasbeenasubjectofextensiveresearchinrecentyears,owingtoitswiderangeofapplicationssuchassecuritysystems,identityverification,andsocialmedia.SIFT,alocalfeaturedescriptor,hasbeenwidelyusedinvariouscomputervisiontasksduetoitsremarkableinvarianceproperties.However,whenapplieddirectlytofacerecognition,SIFTencounterslimitationsduetoitshigh-dimensionalfeaturerepresentationandhighcomputationalcomplexity.ThispaperintroducesADSIFT,animprovedSIFT-basedfacerecognitionmethod,whichaddressestheselimitationsandenhancesthediscriminativepowerofSIFTfeatures. 2.TheSIFTAlgorithm TheSIFTalgorithminvolvesmultiplestages,includingkeypointdetection,orientationassignment,featuredescriptorextraction,andfeaturematching.ThekeypointdetectionstepidentifiesdistinctiveinterestpointsinanimageusingtheDifferenceofGaussian(DoG)scale-spacerepresentation.Orientationassignmentassignsadominantorientationtoeachkeypointbasedonthegradientorientationsinitslocalneighborhood.Featuredescriptorextractionconstructsadescriptorforeachkeypointbyconsideringthegradientmagnitudesandorientationsinitssurroundingregion.Finally,featurematchingcomparestheextractedfeaturedescriptorstofindcorrespondingk