预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于遗传优化的BP神经网络法在甲烷检测中的应用 Abstract Methaneisanimportantgreenhousegasthatcontributessignificantlytoglobalwarming.Theaccuratedetectionofmethaneintheatmosphereisthereforeessentialformonitoringandcontrollinggreenhousegasemissions.Inthisstudy,abackpropagationneuralnetwork(BPNN)modelwastrainedusinggeneticoptimizationalgorithmtoimproveitspredictionaccuracyofmethaneconcentrationsintheatmosphere.TheresultsshowthatthegeneticoptimizationalgorithmsignificantlyimprovestheperformanceoftheBPNNmodel,andthecombinationofthetwotechniquesprovidesamoreaccurateandreliablepredictionofmethaneconcentrationsintheatmosphere.Theproposedmethodcanbeusedasaneffectivetoolformethanedetectionandmonitoring. Introduction Methaneisakeygreenhousegasthatcontributessignificantlytoglobalwarming.Methaneemissionscomefromvarioussources,suchascoalmines,landfills,livestock,andnaturalgasproduction.Accuratedetectionofmethaneintheatmosphereiscrucialforcontrollinggreenhousegasemissionsanddeterminingthesourcesofmethaneemissions.Traditionalmethodsformethanedetectionincludegaschromatography,infraredabsorption,andmassspectrometry.However,thesemethodsareexpensive,time-consuming,andrequirespecializedequipmentandskilledtechnicians.Amoreefficientandcost-effectiveapproachisthereforeneededtodetectandmonitormethaneconcentrationsintheatmosphere. Artificialneuralnetworkshavebeenwidelyusedforenvironmentalmonitoringandmodelingduetotheirabilitytolearnandadaptthroughtraining.Backpropagationneuralnetworks(BPNNs)areapopulartypeofartificialneuralnetworkthatarewidelyusedinpatternrecognitionandclassificationbecauseoftheirabilitytoaccuratelypredictcomplexpatterns.However,BPNNscanoftengetstuckinlocaloptima,leadingtopoorperformance.Toaddressthis,ageneticoptimizationalgorithmcanbeusedtoenhancetheperformanceoftheBPNNmodelbyfindingtheglobaloptimumofthenetwork. Inthisstudy,weproposeanovelmethodutilizingaBPNNmodeloptimizedwithgeneticalgorithm(GA)toaccuratelypredictmethaneconcentrationsintheatmosphere.Ourproposedmethodovercomesthelimitationsoftrad