预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于解析几何实现Dubins避障路径 Abstract: Dubinspathistheshortestpathbetweentwopointswithfixedinitialandfinalheadings,whileavoidingobstacles.ThispaperproposesasolutiontotheDubinspathproblemusinganalyticalgeometry.ThismethodinvolvesfindingtheintersectionpointsbetweentheobstacleboundaryandtheDubinspath,andadjustingthepathaccordingly.Theproposedmethodistestedondifferentobstacleconfigurationsandcomparedtoexistingalgorithms. Introduction: Dubinspathisacrucialconceptinmotionplanningandcontrol,especiallyinapplicationssuchasrobotics,aviationandnavigation.Itisdefinedastheshortestpathbetweentwopointswithfixedinitialandfinalheadings,whilerespectingcertainconstraints.Theconstraintsincludeavoidingobstaclesandsatisfyingthekinematicanddynamiclimitationsofthevehicle.ThesimplicityoftheDubinspath,alongwithitsoptimality,makesitattractiveforreal-timeapplications. TheDubinspathproblemcanbesolvedusingdifferenttechniques,suchasnumericaloptimization,graph-basedmethods,andanalyticalgeometry.Inthispaper,wewillfocusontheanalyticalgeometryapproach.ThismethodinvolvesfindingtheintersectionpointsbetweentheDubinspathandtheobstacles,andmodifyingthepathaccordingly. Methodology: ThemethodologyforsolvingtheDubinspathproblemusinganalyticalgeometryisasfollows: 1.Determinetheinitialandfinalpositionsandheadingsofthevehicle. 2.ComputethelengthoftheDubinspathbasedontheinitialandfinalheadings. 3.GeneratetheDubinspath,whichconsistsofthreesegments:acirclesegment,astraightsegment,andanothercirclesegment. 4.FindtheintersectionpointsbetweentheDubinspathandtheobstacleboundaries. 5.AdjusttheDubinspathtoavoidtheobstaclesandsatisfytheconstraints. 6.Repeatsteps4and5untilafeasiblepathisfound. Findingtheintersectionpoints: Tofindtheintersectionpoints,weneedtorepresenttheDubinspathandtheobstacleboundariesinparametricequations.TheDubinspathcanberepresentedasfollows: x=x1+R1cosθ1+Lsin(θ1+α)+R2cos(θ1+α+θ2) y=y1+R1sinθ1-Lcos(θ1+α)+R2sin(θ1+α+θ2) Wherex1andy1arethecoordinatesoftheinitialposition,R1andR2aretheradiiofthetwocirclesegments,Li