预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于弹性网络正则化的隐因子预测模型 Abstract Inrecentyears,thestudyoflatentfactorpredictionmodelshasbecomeincreasinglypopularinfieldssuchasmachinelearning,statistics,andeconomics.OnesuchmodelistheElasticNetregularizedlatentfactorpredictionmodel,whichcombinesboththeL1andL2regularizationtechniquestoimprovetheaccuracyofthemodelwhilepreventingoverfitting.Inthispaper,wewillexplorethebasicconceptsoftheElasticNetregularizedlatentfactorpredictionmodel,aswellasitskeystepsandassumptions. Introduction TheElasticNetregularizedlatentfactorpredictionmodelisastatisticalmodelthatiswidelyusedtopredicttheoutcomevariablebasedonasetofinputvariables.Thistypeofmodelisparticularlyusefulincaseswherethenumberofinputvariablesislargerthanthenumberofobservations,asitallowsfortheidentificationofasmallernumberofimportantvariablesthathaveamajorimpactontheoutcomevariable. TheElasticNetregularizedlatentfactorpredictionmodelcombinestwotypesofregularizationtechniques:L1andL2regularization.TheL1regularizationtechnique,alsoknownastheLassotechnique,isusedtoforcesomeofthecoefficientsinthemodeltobezero,therebyreducingthenumberofvariablesinthemodel.TheL2regularizationtechnique,ontheotherhand,isusedtopreventoverfittingofthemodelbypenalizingthecoefficientsofthemodel,therebyreducingthemodel’ssensitivitytodatanoise. AlgorithmofElasticNetRegularizedLatentFactorPredictionModel TheElasticNetregularizedlatentfactorpredictionmodelalgorithmcanbedividedintoseveralkeysteps: 1.DataPreprocessing:ThefirststepinapplyingtheElasticNetregularizedlatentfactorpredictionmodelistopreprocesstheinputdatainordertoensurethatitmeetsthenecessaryassumptionsofthemodel.Thisincludesremovinganymissingdata,scalingthedatatohaveameanofzeroandastandarddeviationofone,andensuringthattherearenoextremeoutliersinthedata. 2.DefiningtheModel:ThesecondstepistodefinetheElasticNetregularizedlatentfactorpredictionmodelitself.Thisinvolvesspecifyingthenumberoflatentfactorsthatthemodelwilluseandselectingtheappropriateformofregularizationtobeused. 3.SplittingtheData:Thethirds