变系数分数阶对流扩散方程的一种算子矩阵方法.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
变系数分数阶对流扩散方程的一种算子矩阵方法.docx
变系数分数阶对流扩散方程的一种算子矩阵方法标题:变系数分数阶对流扩散方程的算子矩阵方法摘要:分数阶对流扩散方程是一类常见的非线性偏微分方程,具有广泛的应用。本论文旨在研究变系数分数阶对流扩散方程的数值解的算子矩阵方法,该方法利用矩阵计算的性质,将方程离散化,并求得一个近似解。通过对该方法的理论分析和数值实验,验证其效果和可行性。1.引言对流扩散方程是描述许多物理过程的一种基本偏微分方程。而在实际问题中,许多情况下方程的参数是不确定的、时空变化的,因此需要引入变系数进行建模。而分数阶导数的引入进一步丰富了对
变系数空间分数阶扩散方程的数值方法.docx
变系数空间分数阶扩散方程的数值方法标题:变系数空间分数阶扩散方程的数值方法引言:扩散方程是描述物质在空间中传输和扩散的重要数学模型,在许多领域都有广泛的应用。近年来,分数阶扩散方程作为一种新的扩散模型,引起了学术界的广泛关注。与传统的整数阶扩散方程相比,分数阶扩散方程具有更广泛的应用性和更高的精确性。而变系数空间分数阶扩散方程则是扩展了分数阶扩散方程的一种扩展模型,其具有更高的应用价值。本文将从数值方法的角度探讨变系数空间分数阶扩散方程的数值方法,并对其数值求解进行研究。一、问题的提出变系数空间分数阶扩散
分数阶对流扩散方程的新型特征差分及分数阶扩散问题的快速算法.pptx
分数阶对流扩散方程的新型特征差分及分数阶扩散问题的快速算法目录添加章节标题分数阶对流扩散方程的新型特征差分分数阶对流扩散方程的背景和意义新型特征差分的提出和原理新型特征差分在数值计算中的应用与传统方法的比较和优势分析分数阶扩散问题的快速算法分数阶扩散问题的背景和挑战快速算法的提出和原理快速算法在数值计算中的应用与传统方法的比较和优势分析新型特征差分及快速算法的实验验证实验设置和数据来源新型特征差分的实验结果和分析快速算法的实验结果和分析结果对比和结论新型特征差分及快速算法的应用前景和展望在实际问题中的应用
分数阶对流-扩散方程的基本解和数值方法的中期报告.docx
分数阶对流-扩散方程的基本解和数值方法的中期报告分数阶对流-扩散方程是一类具有非局部性和破坏点源解法的特点的偏微分方程。分数阶导数在空间和时间上有分数个阶的定义和性质,不同于传统的整数阶导数,因此这种方程的求解和数值方法具有独特的难点和挑战。在本中期报告中,我们重点研究了分数阶对流-扩散方程的基本解和数值方法的发展和应用。具体来说,我们首先回顾了分数阶导数的定义和性质,并介绍了基于分数阶导数的常微分方程和偏微分方程模型的建立和求解方法。然后,我们基于分数阶导数的定义,提出了一种基于分数阶扩散方程的真实点源
分数阶对流扩散方程的新型特征差分及分数阶扩散问题的快速算法的综述报告.docx
分数阶对流扩散方程的新型特征差分及分数阶扩散问题的快速算法的综述报告分数阶对流扩散方程是一类具有广泛应用背景的非线性常微分方程,在信号处理、物理学、金融等多个领域中都有着重要的应用。在实际问题中,由于存在边界条件和初值条件,求解该方程很可能会遇到计算量大、求解时间长和精度问题等困难。为了解决这些问题,研究者们提出了一系列新型特征差分方法,如著名的Adomian分解法、数值投影法、Ritz方法等。这些方法具有较高的求解精度,且能够快速收敛。本文主要对分数阶对流扩散方程的新型特征差分方法及分数阶扩散问题的快速