预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

知识网络: 目标认知 考试大纲要求: 1.理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义. 2.了解命题“若p,则q”的形式及其逆命题、否命题与逆否命题,会分析四种命题的相互关系. 3.理解必要条件、充分条件与充要条件的意义. 4.理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定. 重点: 充分条件与必要条件的判定. 难点: 根据命题关系或充分(或必要)条件进行逻辑推理。 知识要点梳理 知识点一:命题 1.定义: 一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题. (1)命题由题设和结论两部分构成.命题通常用小写英文字母表示,如p,q,r,m,n等. (2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题.数学中的定义、公理、定理等都是真命题; (3)命题“”的真假判定方式:①若要判断命题“”是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。 如:一定推出. ②若要判断命题“”是一个假命题,只需要找到一个反例即可. 注意:“不一定等于3”不能判定真假,它不是命题. 2.逻辑联结词: “或”、“且”、“非”这些词叫做逻辑联结词. (1)不含逻辑联结词的命题叫做简单命题,由简单命题与逻辑联结词构成的命题叫做复合命题. (2)复合命题的构成形式: ①p或q;②p且q;③非p(即命题p的否定). (3)复合命题的真假判断(利用真值表): 非真真假真真真假假真假假真真真假假假真假假①当p、q同时为假时,“p或q”为假,其它情况时为真,可简称为“一真必真”; ②当p、q同时为真时,“p且q”为真,其它情况时为假,可简称为“一假必假”。 ③“非p”与p的真假相反. 注意: (1)逻辑连结词“或”的理解是难点,“或”有三层含义,以“p或q”为例:一是p成立且q不成立, 二是p不成立但q成立,三是p成立且q也成立。可以类比于集合中“或”. (2)“或”、“且”联结的命题的否定形式: “p或q”的否定是“p且q”;“p且q”的否定是“p或q”. (3)对命题的否定只是否定命题的结论;否命题,既否定题设,又否定结论。 知识点二:四种命题 1.四种命题的形式: 用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为: 原命题:若p则q;逆命题:若q则p; 否命题:若p则q;逆否命题:若q则p. 2.四种命题的关系 ①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一. ②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径. 除①、②之外,四种命题中其它两个命题的真伪无必然联系. 知识点三:充分条件与必要条件 1.定义: 对于“若p则q”形式的命题: ①若pq,则p是q的充分条件,q是p的必要条件; ②若pq,但qp,则p是q的充分不必要条件,q是p的必要不充分条件; ③若既有pq,又有qp,记作pq,则p是q的充分必要条件(充要条件). 2.理解认知: (1)在判断充分条件与必要条件时,首先要分清哪是条件,哪是结论;然后用条件推结论,再用结论 推条件,最后进行判断. (2)充要条件即等价条件,也是完成命题转化的理论依据. “当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的 同义词语. 3.判断命题充要条件的三种方法 (1)定义法: (2)等价法:由于原命题与它的逆否命题等价,否命题与逆命题等价,因此,如果原命题与逆命题真 假不好判断时,还可以转化为逆否命题与否命题来判断.即利用与; 与;与的等价关系,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法. (3)利用集合间的包含关系判断,比如AB可判断为AB;A=B可判断为AB,且BA,即AB. 如图: “”“,且”是的充分不必要条件. “”“”是的充分必要条件. 知识点四:全称量词与存在量词 1.全称量词与存在量词 (I)全称量词及表示:表示全体的量词称为全称量词。表示形式为“所有”、“任意”、“每一个”等,通常用符号“”表示,读作“对任意”。 含有全称量词的命题,叫做全称称命题。 全称命题“对M中任意一个x,有p(x)成立”可表示为“”,其中M为给定的集合,p(x)是关于x的命题. (II)存在量词及表示:表示部分的量称为存在量词。表示形式为“有一个”,“存在一个”,“至少有一个”,“有点”,“有些”等,通常用符号“”表示,读作“存在”。 含有存在量词的命题,叫做特称命题。 特称命题“存在M中的一个x,使p(x)成立”可表示为“”,其中M为给定的集合,p(x)是关于x的命题. 2.对含有一个量词的命题进行否定 (I)对含有一个量词的全称命题的否定 全称命题p:,他的否定:。全称命题的否定是