预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高考压轴导数大题 例1.已知函数在区间,内各有一个极值点. (I)求的最大值; (II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式. 例3已知函数,其中为参数,且. (1)当时,判断函数是否有极值; (2)要使函数的极小值大于零,求参数的取值范围; 例4.已知函数在点处取得极大值,其导函数的图象经过点,. 求:(Ⅰ)的值; (Ⅱ)的值. 例5设是函数的一个极值点. (Ⅰ)求与的关系式(用表示),并求的单调区间; (Ⅱ)设,.若存在使得成立, 求的取值范围 例6已知函数 在处取得极大值,在处取得极小值,且. (1)证明; (2)若z=a+2b,求z的取值范围。 1.已知函数,. (Ⅰ)如果函数在上是单调增函数,求的取值范围; (Ⅱ)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由. 2.如果是函数的一个极值,称点是函数的一个极值点.已知函数 (1)若函数总存在有两个极值点,求所满足的关系; (2)若函数有两个极值点,且存在,求在不等式表示的区域内时实数的范围.(3)若函数恰有一个极值点,且存在,使在不等式表示的区域内,证明:. 3已知函数. (1)若函数是其定义域上的增函数,求实数的取值范围; (2)若是奇函数,且的极大值是,求函数在区间上的最大值; (3)证明:当时,. 4已知实数a满足0<a≤2,a≠1,设函数f(x)=x3-x2+ax. (Ⅰ)当a=2时,求f(x)的极小值; (Ⅱ)若函数g(x)=x3+bx2-(2b+4)x+lnx(b∈R)的极小值点与f(x)的极小值点相同. 求证:g(x)的极大值小于等于5/4 例1解(I)因为函数在区间,内分别有一个极值点,所以在,内分别有一个实根, 设两实根为(),则,且.于是 ,,且当,即,时等号成立.故的最大值是16. (II)解法一:由知在点处的切线的方程是 ,即, 因为切线在点处空过的图象, 所以在两边附近的函数值异号,则 不是的极值点. 而,且 . 若,则和都是的极值点. 所以,即,又由,得,故. 解法二:同解法一得 . 因为切线在点处穿过的图象,所以在两边附近的函数值异号,于是存在(). 当时,,当时,; 或当时,,当时,. 设,则 当时,,当时,; 或当时,,当时,. 由知是的一个极值点,则, 所以,又由,得,故. 例3解(Ⅰ)当时,,则在内是增函数,故无极值. (Ⅱ),令,得. 由(Ⅰ),只需分下面两种情况讨论. ①当时,随x的变化的符号及的变化情况如下表: x0+0-0+↗极大值 ↘极小值↗因此,函数在处取得极小值,且. 要使,必有,可得. 由于,故. =2\*GB3②当时,随x的变化,的符号及的变化情况如下表: +0-0+极大值极小值因此,函数处取得极小值,且 若,则.矛盾.所以当时,的极小值不会大于零. 综上,要使函数在内的极小值大于零,参数的取值范围为. 例4解法一:(Ⅰ)由图像可知,在上,在上,在上, 故在上递增,在上递减, 因此在处取得极大值,所以 (Ⅱ) 由 得 解得 解法二:(Ⅰ)同解法一 (Ⅱ)设 又 所以 由即得 所以 例5解(Ⅰ)f`(x)=-[x2+(a-2)x+b-a]e3-x, 由f`(3)=0,得-[32+(a-2)3+b-a]e3-3=0,即得b=-3-2a, 则f`(x)=[x2+(a-2)x-3-2a-a]e3-x =-[x2+(a-2)x-3-3a]e3-x=-(x-3)(x+a+1)e3-x. 令f`(x)=0,得x1=3或x2=-a-1,由于x=3是极值点, 所以x+a+1≠0,那么a≠-4. 当a<-4时,x2>3=x1,则 在区间(-∞,3)上,f`(x)<0,f(x)为减函数; 在区间(3,―a―1)上,f`(x)>0,f(x)为增函数; 在区间(―a―1,+∞)上,f`(x)<0,f(x)为减函数. 当a>-4时,x2<3=x1,则 在区间(-∞,―a―1)上,f`(x)<0,f(x)为减函数; 在区间(―a―1,3)上,f`(x)>0,f(x)为增函数; 在区间(3,+∞)上,f`(x)<0,f(x)为减函数. (Ⅱ)由(Ⅰ)知,当a>0时,f(x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f(x)在区间[0,4]上的值域是[min(f(0),f(4)),f(3)], 而f(0)=-(2a+3)e3<0,f(4)=(2a+13)e-1>0,f(3)=a+6, 那么f(x)在区间[0,4]上的值域是[-(2a+3)e3,a+6]. 又在区间[0,4]上是增函数, 且它在区间[0,4]上的值域是[a2+,(a2+)e4], 由于