预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

次梯度法在求解非光滑最优化问题时的计算效果研究(英文) Title:ACaseStudyontheComputationalEfficiencyofSubgradientMethodsforNon-SmoothOptimizationProblems Abstract: Non-smoothoptimizationproblemsariseinmanyreal-worldapplications,andtheirefficientsolutioniscrucialforvariousoptimizationtasks.Subgradientmethodshaveproventobeeffectiveintacklingsuchproblemsduetotheirabilitytohandlenon-smoothnessandscalabilitytohigh-dimensionalproblems.Thispaperpresentsacomprehensiveinvestigationofthecomputationalefficiencyofsubgradientmethodsinsolvingnon-smoothoptimizationproblems. Introduction: Non-smoothoptimizationproblemsinvolveobjectivefunctionsthatarenotdifferentiableinsomeorallpartsofthefeasibledomain.Typicalexamplesincludeproblemswithnon-differentiableconstraints,problemswithnon-differentiablecostfunctions,andproblemsinvolvingnon-smoothregularizationterms.Subgradientmethods,alsoknownassubgradientdescentorsubgradientoptimization,aregradient-basedoptimizationtechniquesthatcanbeappliedtosolvenon-smoothproblems.Theyofferapracticalandversatileapproachtohandlenon-smoothnessinoptimization. Methods: Inthisstudy,wefocusonthreepopularsubgradientmethods:theclassicsubgradientmethod,thesubgradientmethodwithlinesearch,andthebundlemethod.Weconsiderasetofbenchmarknon-smoothoptimizationproblemsandcomparetheperformanceofthesemethodsintermsofcomputationalefficiency.Thebenchmarksetincludesproblemsfromvariousapplicationdomains,suchasmachinelearning,signalprocessing,andimagereconstruction. Results: Theresultsdemonstratethatsubgradientmethodsexhibitfavorablecomputationalefficiencyinsolvingnon-smoothoptimizationproblems.Theclassicsubgradientmethodprovidesagoodbaselineperformance,whilethesubgradientmethodwithlinesearchimprovesconvergencebyadaptivelyadjustingthestepsize.Thebundlemethod,ontheotherhand,incorporatestheinformationobtainedfrompastiterationstoaccelerateconvergenceandachievebettercomputationalefficiency.Overall,thesemethodsshowpromisingresultsintermsofconvergencerateandtime-to-solution. Discussion: Thecomputationalefficienc