基于经验模态分解的混合软件可靠性预测模型.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于经验模态分解的混合软件可靠性预测模型.docx
基于经验模态分解的混合软件可靠性预测模型随着计算机软件在各行各业的广泛应用,软件可靠性问题变得越来越重要。软件可靠性预测是评估软件可靠性的关键方法之一。基于经验模态分解的混合软件可靠性预测模型是近年来提出的一种新方法,本文将对这一模型进行详细介绍与分析。一、经验模态分解基本原理经验模态分解(EmpiricalModeDecomposition,EMD)是一种自适应信号分解方法,模态是指具有自然频率和时间演化特征的函数。EMD基本思想是先将待分解信号进行局部极值点的连接,并求取极值点的平均值得到一条中间结果
基于集合经验模态分解与ARMA-Elman混合模型的光伏功率预测方法.pdf
本发明涉及光伏发电功率预测技术领域,公开了一种基于集合经验模态分解与ARMA?Elman混合模型的光伏功率预测方法,包括:步骤1:获取待预测系统的光伏功率数据,并使用集合经验模态分解将数据分解;步骤2:利用过零率对分解后的信号分类;步骤3:将高频信号、低频信号分别输入Elman和ARMA模型进行训练与预测;步骤4:将预测结果进行叠加,输出最终预测结果。与现有技术相比,本发明通过过零率对信号高频、低频分量进行划分,利用Elman和ARMA模型分别对高频与低频信号特征进行预测,在复杂天气情况下,针对非平稳随机
基于经验模态分解的降水量组合预测模型.pptx
,目录PartOnePartTwoEMD方法概述EMD在降水量预测中的应用EMD的优势与局限性PartThree组合预测模型概述基于EMD的组合预测模型构建模型参数选择与优化PartFour数据准备与预处理模型训练与验证模型评估指标模型优缺点分析PartFive模型优化方向集成学习与模型融合在其他领域的应用拓展PartSix研究结论总结对未来研究的建议与展望THANKS
基于经验模态分解和LSTM模型的滑坡位移预测.docx
基于经验模态分解和LSTM模型的滑坡位移预测摘要滑坡是一种严重的地质灾害,其位移预测对于人们的生命财产安全至关重要。本文提出了一种基于经验模态分解和LSTM模型的滑坡位移预测方法。首先,对滑坡位移数据进行经验模态分解,将原始信号分解成若干个本征模态函数(EMD);其次,采用长短期记忆神经网络(LSTM)模型对每个EMD模态函数进行预测;最后,将每个EMD预测结果进行组合,得到整个滑坡的位移预测结果。实验结果表明,本文方法能够较好地对滑坡位移进行预测,具有一定的应用价值。关键词:滑坡;位移预测;经验模态分解
基于补充集合经验模态分解的短期负荷预测模型.docx
基于补充集合经验模态分解的短期负荷预测模型基于补充集合经验模态分解的短期负荷预测模型摘要:短期负荷预测对于电力系统的运行和调度是至关重要的,它可以提供准确的电力负荷预测结果,以便进行有效的能源调配和负荷平衡。本文提出了一种基于补充集合经验模态分解的短期负荷预测模型,通过对历史负荷数据进行补充集合经验模态分解,可以提取负荷数据的局部时空特征,并使用神经网络进行预测模型的建立。实验结果表明,该模型在短期负荷预测上具有高准确率和良好的泛化能力。关键词:短期负荷预测;补充集合经验模态分解;神经网络;准确率;泛化能