预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于偏最小二乘回归的藻类荧光光谱特征波长选取 Abstract: Inrecentyears,theapplicationofremotesensingtechnologyinthestudyofwaterqualityhasattractedincreasingattention.Thestudyofalgalfluorescencespectrumcharacteristicscanreflectthechangesinwaterqualityandprovideabasisfortheearlywarningofwaterpollution.Thispaperappliesthepartialleastsquaresregression(PLSR)methodtoselectthecharacteristicwavelengthsofalgalfluorescencespectra.Theresultsshowthattheselectionofcharacteristicwavelengthscaneffectivelyreflectthechangesinwaterquality. Introduction: Wateristhesourceoflife,andwaterqualitydirectlyaffectshumanhealthandecologicalbalance.Withtherapiddevelopmentofmodernindustryandagriculture,waterpollutionhasbecomeincreasinglyserious,andthetraditionalmonitoringmethodscannotmeettheneedsofreal-time,accurate,andcomprehensivemonitoringofwaterquality.Remotesensingtechnologyhastheadvantagesofwidecoverage,real-timemonitoring,andadvancedinformationprocessingmethods,whichprovideanewwayforwaterqualitymonitoring.Fluorescencespectroscopyisasensitiveandrapidmethodforanalyzingwaterqualitatively,andthefluorescenceofchlorophyllcanreflectthechangesinaquaticprimaryproductivityandthecompositionofphytoplanktonspecies.Therefore,thestudyofalgalfluorescencespectrumcharacteristicscanprovideascientificbasisfortheearlywarningofwaterpollution. Methodology: ThestudyusedaPLSRregressionmodeltoselectthecharacteristicwavelengthsofalgalfluorescencespectrabasedonthespectraldataobtainedfromthelaboratory.Duringtheexperiment,thefluorescencespectraofalgaeweremeasuredunderdifferentwaterqualityconditions,andthespectralfeaturesofdifferentwatersampleswereanalyzed.Then,thePLSRmodelwasconstructed,andthecorrelationbetweenthespectralcharacteristicsandwaterqualityparameterswasanalyzed.Themodelwastrainedandvalidatedusingcross-validation,andtheR2androot-mean-squareerror(RMSE)valueswerecalculatedtoevaluatethemodel'saccuracy.Finally,thecharacteristicwavelengthswereselectedbasedontheimportanceofthespectralvariablesinthePLSRmodel. Results: ThePLSRmodelwasusedto