预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共28页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年九上数学期末模拟试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题(每题4分,共48分) 1.在一个不透明的盒子中装有2个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是,则黄球的个数为() A.2 B.3 C.4 D.6 2.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是() A. B. C. D. 3.,是的两条切线,,为切点,直线交于,两点,交于点,为的直径,下列结论中不正确的是() A. B. C. D. 4.二次函数的图象如图所示,下列结论:;;;;,其中正确结论的是 A. B. C. D. 5.如图,一条抛物线与轴相交于、两点(点在点的左侧),其顶点在线段上移动.若点、的坐标分别为、,点的横坐标的最大值为,则点的横坐标的最小值为() A. B. C. D. 6.若与相似且对应中线之比为,则周长之比和面积比分别是() A., B., C., D., 7.关于x的一元二次方程ax2﹣4x+1=0有实数根,则整数a的最大值是() A.1 B.﹣4 C.3 D.4 8.如图,在△ABC中,AD⊥BC交BC于点D,AD=BD,若AB=,tanC=,则BC=() A.8 B. C.7 D. 9.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=35°,那么∠BAD等于() A.35° B.45° C.55° D.65° 10.已知点C为线段AB延长线上的一点,以A为圆心,AC长为半径作⊙A,则点B与⊙A的位置关系为() A.点B在⊙A上 B.点B在⊙A外 C.点B在⊙A内 D.不能确定 11.如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,,.若S=3,则的值为() A.24 B.12 C.6 D.3 12.如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是() A.-2 B.±4 C.2 D.±2 二、填空题(每题4分,共24分) 13.计算_________. 14.若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为__________度. 15.在比例尺为1∶500000的地图上,量得A、B两地的距离为3cm,则A、B两地的实际距离为_____km. 16.已知,则的值是_____________. 17.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______. 18.如图,点O是△ABC的内切圆的圆心,若∠A=100°,则∠BOC为_____. 三、解答题(共78分) 19.(8分)材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线. 图1 图2 材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10m,间距AB为32m,桥面AB水平,主索最低点为点P,点P距离桥面为2m; 图3 为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如下图: 甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系; 乙同学:以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系; 丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系. (1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式; (2)距离点P水平距离为4m和8m处的吊索共四条需要更换,则四根吊索总长度为多少米? 20.(8分)如图,AB是⊙O的直径,点C是⊙O上一点(点C不与A,B重合),连接CA,CB.∠ACB的平分线CD与⊙O交于点D. (1)求∠ACD的度数; (2)探究CA,CB,CD三者之间的等量关系,并证明; (3)E为⊙O外一点,满足ED=BD,AB=5,AE=3,若点P为AE中点,求PO的长. 21.(8分)如图1,分别是的内角的平分线,过点作,交的延长线于点. (1)求证:; (2)如图2,如果,且,求; (3)如果是