预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共103页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第六章因子模型和套利定价理论(APT)CAPM是建立在一系列假设之上的非常理想化的模型,这些假设包括HarryMarkowitz建立均值-方差模型时所作的假设。这其中最关键的假设是,所有投资者的无差异曲线建立在证券组合回报率的期望和标准差之上。 相反,APT所作的假设少得多。APT的基本假设之一是,当投资者具有在不增加风险的前提下提高回报率的机会时,每个人都会利用这个机会,即,个体是非满足的。另外一个重要的假设是,证券市场证券种类特别多,并且彼此之间独立。 1.因子模型(FactorModel)例子:市场模型 这里 =在给定的时间区间,证券i的回报率 =在同一时间区间,市场指标I的回报率 =截矩项 =斜率项 =随机误差项, 例子:Flyer公司股票的下一个月回报率 这里 表示实际月回报率 表示期望回报率 表示回报率的非期望部分 期望回报率是市场中投资者预期到的回报率,依赖于投资者现在获得地关于该种股票的所有信息,以及投资者对何种因素影响回报率地全部了解。回报率的非期望部分由下一个月内显示地信息导致,例如 NewsaboutFlyers’research Governmentfiguresreleasedonthegrossnationalproduct(GNP) Resultsofthelatestarms-controltalks Discoverythatarival’sproducthasbeentamperedwith NewsthatFleyers’salesfiguresarehigherthanexpected Asuddendropininterestrates TheunexpectedretirementofFlyers’founderandpresident 这里 由于系统原因导致的回报率的非期望部分 由于非系统原因导致的回报率的非期望部分市场模型是一种单因子模型——以市场指标的回报率作为因子。 由于在实际中,证券的回报率往往不只受市场指标变动的影响,所以,在估计证券的期望回报率、方差以及协方差的准确度方面,多因子模型比市场模型更有效。作为一种回报率产生过程,因子模型具有以下几个特点。 第一,因子模型中的因子应该是系统影响所有证券价格的经济因素。 第二,在构造因子模型中,我们假设两个证券的回报率相关——一起运动——仅仅是因为它们对因子运动的共同反应导致的。 第三,证券回报率中不能由因子模型解释的部分是该证券所独有的,从而与别的证券回报率的特有部分无关,也与因子的运动无关。因子模型在证券组合管理中的应用 在证券组合选择过程中,减少估计量和计算量 刻画证券组合对因子的敏感度2.单因子模型表6-1因子模型数据 年份 GDP增长率 A股票回报率 1 5.7% 14.3% 2 6.4 19.2 3 7.9 23.4 4 7.0 15.6 5 5.1 9.2 6 2.9 13.0 图6-1中,横轴表示GDP的预期增长率,纵轴表示证券A的回报率。图上的每一点表示表6-1中,在给定的年份,A的回报率与GDP增长率的关系。通过线性回归分析,我们得到一条符合这些点的直线。这条直线的斜率为2,说明A的回报率与GDP增长率有正的关系。GDP增长率越大,A的回报率越高。写成方程的形式,A的回报率与GDP预期增长率之间的关系可以表示如下 (6.1) 这里 =A在t时的回报率, =GDP在t时的预期增长率, =A在t时的回报率的特有部分, =A对GDP的预期增长率的敏感度, =有关GDP的零因子。在图6-1中,零因子是4%,这是GDP的预期增长率为零时,A的回报率。A的回报率对GDP增长率的敏感度为2,这是图中直线的斜率。这个值表明,高的GDP的预期增长率一定伴随着高的A的回报率。如果GDP的预期增长率是5%,则A的回报率为14%。如果GDP的预期增长率增加1%——为6%时,则A的回报率增加2%,或者为16%。在这个例子里,第六年的GDP的预期增长率为2.9%,A的实际回报率是13%。因此,A的回报率的特有部分(由给出)为3.2%。给定GNP的预期增长率为2.9%,从A的实际回报率13%中减去A的期望回报率9.8%,就得到A的回报率的特有部分3.2%。从这个例子可以看出,A在任何一期的回报率包含了三种成份: 1.在任何一期都相同的部分() 2.依赖于GDP的预期增长率,每一期都不相同的部分 () 3.属于特定一期的特殊部分()。这里,是因子在时间t的因子的值,对在时间t的所有的证券而言,它是相同的。是证券i对因子的敏感度,对证券i而言,不随时间的变化而变化。是证券i在时间t的回报率的特有部分。这是一个均值为0,标准差为,且与因子无关的随机变量,我们以后简称为随机项。为简单计,只考虑在