预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

绝密★启用前试卷类型:B 2010年普通高等学校招生全国统一考试(山东卷) 理科数学解析版 注意事项: 1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B铅笔将答题卡上试卷类型B后的方框涂黑。 2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,用橡皮擦干净后,再选涂其他答案标号。咎在试题卷、草稿纸上无效。 3填空题和解答题用05毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。答在试题卷、草稿纸上无效。 4考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。 第Ⅰ卷(共60分) 一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的. 已知全集U=R,集合M={x||x-1|2},则 (A){x|-1<x<3}(B){x|-1x3}(C){x|x<-1或x>3}(D){x|x-1或x3} 【答案】C 【解析】因为集合,全集,所以,故选C. 【命题意图】本题考查集合的补集运算,属容易题. (2)已知(a,b∈R),其中i为虚数单位,则a+b= (A)-1(B)1(C)2(D)3 【答案】B 【解析】由得,所以由复数相等的意义知:,所以1,故选B. 【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。 (3)在空间,下列命题正确的是 (A)平行直线的平行投影重合 (B)平行于同一直线的两个平面平行 (C)垂直于同一平面的两个平面平行 (D)垂直于同一平面的两条直线平行 【答案】D 【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以很容易得出答案。 【命题意图】本题考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题。 (4)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=+2x+b(b为常数),则f(-1)= (A)3(B)1(C)-1(D)-3 【答案】D (7)由曲线y=,y=围成的封闭图形面积为 (A) (B) (C) (D) 【答案】A 【解析】由题意得:所求封闭图形的面积为,故选A。 【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。 (8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有 (A)36种 (B)42种 (C)48种 (D)54种 【答案】B 可知当直线平移到点(5,3)时,目标函数取得最大值3;当直线平移到点(3,5)时,目标函数取得最小值-11,故选A。 【命题意图】本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函数的几何意义是解答好本题的关键。 (11)函数y=2x-的图像大致是 【答案】A 【解析】因为当x=2或4时,2x-=0,所以排除B、C;当x=-2时,2x-=,故排除D,所以选A。 【命题意图】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力。 (12)定义平面向量之间的一种运算“”如下,对任意的,,令 ,下面说法错误的是() A.若与共线,则B. C.对任意的,有D. 【答案】B 【解析】若与共线,则有,故A正确;因为,而 ,所以有,故选项B错误,故选B。 【命题意图】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力。 二、填空题:本大题共4小题,每小题4分,共16分. (13)执行右图所示的程序框图,若输入,则输出的值为. 【答案】 【解析】当x=10时,y=,此时|y-x|=6; 当x=4时,y=,此时|y-x|=3;当x=1时,y=,此时|y-x|=; 当x=时,y=,此时|y-x|=,故输出y的值为。 【命题意图】本题考查程序框图的基础知识,考查了同学们的试图能力。 【答案】 【解析】由题意,设所求的直线方程为,设圆心坐标为,则由题意知: ,解得或-1,又因为圆心在x轴的正半轴上,所以,故圆心坐标为 (3,0),因为圆心(3,0)在所求的直线上,所以有,即,故所求的直线方程为 。 【命题意图】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。 (18)(本小题满分12分) 已知等差数列满足:,,的前n项和为. (Ⅰ)求及; (Ⅱ)令bn=(nN*),求数列的前n项和. 【解析】(Ⅰ)设等差数列的公差为d,因为,,所以有 ,解得, 所以;==。 (Ⅱ)由(Ⅰ)知,所以bn===, 所以==, 即数列的前n项和=。 【命题意图】本题考查等差数列的通项公式与前n项和公式的应用、裂项法