预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于DSP和ARM的车牌识别系统设计 Title:DesignofaDSPandARM-BasedLicensePlateRecognitionSystem Abstract: Thelicenseplaterecognition(LPR)systemhasgainedconsiderableattentioninrecentyearsduetoitspotentialapplicationsinvariousfields,suchastrafficmanagement,lawenforcement,andaccesscontrol.Inthispaper,wepresentthedesignofalicenseplaterecognitionsystembasedonDigitalSignalProcessor(DSP)andARM(AdvancedRISCMachines)architecture.ThissystemutilizesthepowerofDSPforefficientimageprocessingandARMforintelligentdecision-making.Wediscussthearchitecture,algorithmdesign,andsystemintegrationoftheproposedsystem.Experimentalresultsdemonstratetheeffectivenessandaccuracyofthedesignedsysteminrecognizinglicenseplatesfromdiverseenvironments. 1.Introduction: Licenseplaterecognition(LPR)systemsplayacrucialroleinenhancingsecurityandefficiencyintransportationandsurveillance.TheconventionalLPRsystemstypicallyinvolvemultipleprocessingsteps,includingimageacquisition,preprocessing,segmentation,featureextraction,andcharacterrecognition.However,executingthesealgorithmsinreal-timedemandssignificantcomputationalresources.Thus,bridgingthisgapbetweencomputationaldemandandprocessingcapabilityisessential. 2.DSPandARMArchitecture: TheintegrationofDSPandARMarchitectureoffersapowerfulsolutiontoaddressthechallengesassociatedwithreal-timeimageprocessing.TheDSPisspecificallydesignedtoexecutehigh-performancetasks,suchasfiltering,convolution,andpixel-leveloperations.Ontheotherhand,theARMprocessorprovidesintelligenceanddecision-makingcapabilitiesforefficientprocessing.Thecombinationofthesearchitecturesenhancesthesystem'soverallperformanceintermsofspeed,accuracy,andpowerefficiency. 3.AlgorithmDesign: Theproposedsystememploysaseriesofalgorithmstailoredforlicenseplaterecognition.Thealgorithmicpipelineincludesimageacquisition,preprocessing,segmentation,featureextraction,andcharacterrecognition.EachalgorithmisoptimizedforfastexecutionontheDSPplatform,leveragingitscapabilitiesforefficientcomputation.Forexample,adaptivefilteringandedgedete