预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

典型持久性有机污染物在PUF--空气中分配系数的定量构效关系研究 Title:QuantitativeStructure-PropertyRelationshipStudyofPartitionCoefficientsofTypicalPersistentOrganicPollutantsinPolyurethaneFoam(PUF)-Air Abstract: Persistentorganicpollutants(POPs)areaclassofenvironmentallyharmfulcompoundsthatresistdegradationandbioaccumulateintheenvironment.Theaccurateestimationoftheirpartitioncoefficientsiscrucialforunderstandingtheirfateandtransportinvariousenvironmentalcompartments.Thisstudyaimstoestablishaquantitativestructure-propertyrelationship(QSPR)modeltopredictthepartitioncoefficientsofPOPsinpolyurethanefoam(PUF)-airsystem,whichisanimportantsteptowardsassessingtheirenvironmentalbehavior. 1.Introduction ThepresenceofPOPsintheenvironmentposessignificantriskstohumanhealthandecosystems.Theirabilitytopersist,bioaccumulate,andbiomagnifyinvariousenvironmentalmatricesmakestheirenvironmentalfateandbehaviorcomplex.PartitioncoefficientsarefundamentalparametersusedtodescribethedistributionofPOPsbetweendifferentphases,andunderstandingthefactorsinfluencingtheirpartitioningbehaviorisvitalforriskassessmentandmanagement. 2.ExperimentalMethods Inthisstudy,acomprehensivedatasetofpartitioncoefficientsofPOPsinPUF-airsystemwascompiledfromexistingliterature.Thecompoundsincludedinthedatasetwereselectedbasedontheirpersistence,toxicity,andrelevancetoenvironmentalconcerns.Moleculardescriptors,suchasmolecularweight,octanol-waterpartitioncoefficient,andtopologicalindices,werecalculatedusingsoftwaretoolstorepresentthestructuralpropertiesofthecompounds. 3.ResultsandDiscussion Statisticalanalysiswasperformedonthedatasettoidentifythekeydescriptorsaffectingthepartitioncoefficients.MultiplelinearregressionandmachinelearningalgorithmswereemployedtodevelopQSPRmodelsforpredictingthepartitioncoefficientsofPOPsinPUF-airsystem.Theperformanceofthemodelswasassessedusingcross-validationandexternalvalidationtechniques. 4.Conclusion TheQSPRmodelsdevelopedinthisstudyprovideaquantitativeframeworkforpredictingthepartitioncoefficientsofPOPsinPUF-airsys