预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共63页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

药物设计 发现(discover):以天然产物为主 药物发展发展(develop):以合成药物为主 设计(design):QSAR、3D-QSAR设计、基于受 体、配体的设计 药物分子设计:以理性的构思和科学的策略方法, 构建具有预期药理活性的新化学实体(NCE)。 剂型设计:确定剂型、给药途径、处方组成、单元剂量等。 剂量设计:用药剂量、频率和疗程等。靶标的确定 模型的建立 先导化合物的发现 先导化合物的优化靶标的确定脂氧合酶(5-LOX)环氧合酶(COX)双效抑制。花生四烯酸经历COX和5-LOX两种酶的代谢,在NSAID阻断前列腺素合成的同时,LOX催化的代谢产物白三烯(LTS)之生成将相对增加,而LTS又是一类重要的致炎物质,这就要求新型NSAID必须对COX和5-LOX产生双重抑制作用。以环氧合酶(COX1和COX2)作用机制为基础发现新药建立生物学模型,以筛选和评价化合物的活性。建立的模型可有不同的层次,但均应反映出是针对所选定的靶标的作用。 除了建立药效学模型外,还应建立评价药代动力学性质的模型,在早期研究中同时评价药效和药代性质,可降低后期开发的风险。优化先导化合物(Leadoptimization) 相似性原理分子的相似性与多样性,是两个相互联系而又对立的概念。多样性意味着分子不相似性,所以相似性结构不可能是多样的。 为了发现苗头物或先导物,开始设计的化合物结构应尽可能多样和不相似性。 为了优化先导物,就应体现有控制地相似性和一定限度内的多样性,在不改变或丢失药效基团的前提下尽可能地体现多样性。与分子的多样性不同的是,相似性原理在很大程度上不需要以了解药物作用靶标的分子结构为前提,即使不清楚先导物的作用机理,也可根据一定的法则从其本身的结构出发进行变换,实现分子的优化操作。 当然,在药物中并非含有相同药效基团的类似物都有相似的生物活性。这是因为药物的生物活性是在复杂的体系中呈现的,在与生物靶标结合时,分子的大小、结构、形状(构型或构象)的不同,都会导致不同的活性。但这并不影响相似性原理在药物设计中的广泛应用。 疗效更好 类似物设计目的毒副作用更小/少 更便于合成 药效保持或更好 药效减小或消失 类似物设计结果毒副作用减少/小 毒副作用减多/大 新的药效 利用生物电子等排体进行似物的设计,既可产生相似的生物效应,也可产生相反的生物效应。 例1:哌替啶衍生物的镇痛活性产生相反的生物效应饱和链环合成环状物,或环状物开环成链状分子,均改变了分子的形状、构象和表面积,会影响与受体的识别和结合,也影响药代动力学性质。 将链状结构连接成环的分子设计,目的是限制分子的构象,减少低能构象体数目,有助于提高选择性。此外,还可用合环操作来推断药物的药效构象。 例1:苯丙醇胺修饰 苯丙醇胺(Phenylpropanolamine)具有β受体阻断、奎尼丁样、降压和局麻等多种作用,这是因为它是柔性分子,有多种低能构象,可与不同受体结合的缘故。通过不同的合环方式,可生成不同的构象限制体,从而提高化合物的选择性。如将叔丁基环合到苯环上(a),则成为苯并氮氧杂环辛烯,为强效β受体阻断剂,将亚胺水解得到开链苯乙酮化合物,活性只为环状物的25%;若将连接胺基的亚甲基环合到苯环上(b),得苯并二氢吡喃化合物,再经适当修饰,则消除了β受体阻断作用,为钾离子通道开放剂,具有降压活性。例3:平喘药麻黄碱的修饰 合环操作也可能引起活性发生质的变化。如将平喘药麻黄碱(Ephedrine)环合成芬美曲秦(Phenmetrazine),无支气管解痉作用,而是食欲抑制剂。 环状物的开环,伴以分子剖裂的操作,常见于天然活性产物的结构简化和修饰,同时也是确定药效团的过程。 例1:镇痛药吗啡的修饰从吗啡到芬太尼不仅简化了结构,而且不含手性中心,活性也提高了80倍。 雌二醇(Estrsdiol)C、D环的开环类似物阿仑雌酚(Allenestrol)仍是雌二醇受体激动剂,分子中的羟基和羧基在优势构象的空间位置与雌二醇的3,17-二羟基相对应。 开环的分子操作有时也会导致活性降低。色满卡林(Cromakalim)为钾离子通道开放剂,具有降压活性。将其分子中的4-吡咯酮环开环后,活性降低60%。这可能是由于分子的柔性增大不利于结合的缘故。烃链同系化:烃链的增长或缩短会影响化合物的疏水性,改变分配系数,导致体内药动学性质的变化。同时还会影响立体性,以及引起占位性的位阻,影响分子的构象。 例1:影响疏水性 3-(2-烷氧基-3-哌嗪基)-1,2,5,6-四氢-1-甲基吡啶是M1受体激动剂。当由甲氧基变换到丁氧基时,化合物的疏水性增大,与受体的亲和力(Ki)从850μmol/L降低至17μmol/L。提示较大的烷基有利于激动作用。例2