预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第1讲函数图象与性质及函数与方程 一、选择题 1.(2015·广东卷)下列函数中,既不是奇函数,也不是偶函数的是() A.y=x+ex B.y=x+eq\f(1,x) C.y=2x+eq\f(1,2x) D.y=eq\r(1+x2) 解析令f(x)=x+ex,则f(1)=1+e,f(-1)=-1+e-1,即f(-1)≠f(1),f(-1)≠-f(1),所以y=x+ex既不是奇函数也不是偶函数,而B,C,D依次是奇函数、偶函数、偶函数,故选A. 答案A 2.函数f(x)=log2x-eq\f(1,x)的零点所在的区间为() A.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2))) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),1))C.(1,2) D.(2,3) 解析函数f(x)的定义域为(0,+∞),且函数f(x)在(0,+∞)上为增函数. feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))=log2eq\f(1,2)-eq\f(1,\f(1,2))=-1-2=-3<0,f(1)=log21-eq\f(1,1)=0-1<0, f(2)=log22-eq\f(1,2)=1-eq\f(1,2)=eq\f(1,2)>0,f(3)=log23-eq\f(1,3)>1-eq\f(1,3)=eq\f(2,3)>0,即f(1)·f(2)<0, ∴函数f(x)=log2x-eq\f(1,x)的零点在区间(1,2)内. 答案C 3.(2014·山东卷)已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是() A.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2))) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),1)) C.(1,2) D.(2,+∞) 解析由f(x)=g(x),∴|x-2|+1=kx,即|x-2|=kx-1,所以原题等价于函数y=|x-2|与y=kx-1的图象有2个不同交点.如图:∴y=kx-1在直线y=x-1与y=eq\f(1,2)x-1之间,∴eq\f(1,2)<k<1,故选B. 答案B 4.(2015·山东卷)设函数f(x)=eq\b\lc\{(\a\vs4\al\co1(3x-1,x<1,,2x,x≥1,))则满足f(f(a))=2f(a)的a取值范围是() A.eq\b\lc\[\rc\](\a\vs4\al\co1(\f(2,3),1)) B.[0,1] C.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(2,3),+∞)) D.[1,+∞) 解析当a=2时,f(a)=f(2)=22=4>1,f(f(a))=2f(a),∴a=2满足题意,排除A,B选项;当a=eq\f(2,3)时,f(a)=feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))=3×eq\f(2,3)-1=1,f(f(a))=2f(a),∴a=eq\f(2,3)满足题意,排除D选项,故答案为C. 答案C 5.(2015·全国Ⅱ卷)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为() 解析当点P沿着边BC运动,即0≤x≤eq\f(π,4)时,在Rt△POB中,|PB|=|OB|tan∠POB=tanx,在Rt△PAB中,|PA|=eq\r(|AB|2+|PB|2)=eq\r(4+tan2x),则f(x)=|PA|+|PB|=eq\r(4+tan2x)+tanx,它不是关于x的一次函数,图象不是线段,故排除A和C; 当点P与点C重合,即x=eq\f(π,4)时,由上得feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)))=eq\r(4+tan2\f(π,4))+taneq\f(π,4)=eq\r(5)+1,又当点P与边CD的中点重合,即x=eq\f(π,2)时,△PAO与△PBO是全等的腰长为1的等腰直角三角形,故feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)))=|PA|+|PB|=eq\r(2)+eq\r(2)