数列专题复习(附答案解析).pdf
小新****ou
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
数列专题复习(附答案解析).pdf
数列(1)基础达标南昌一模已知为等差数列,若=+,=+,则=.1.(2019·){an}a22a31a42a37a5________厦门一模在等比数列中,已知=,=,则=.2.(2019·){an}a21a3a52a7an________潍坊二模在等比数列中,已知=,=,为的前项和.若3.(2019·){an}a11a58a2Sn{an}n=,则=Sn1023n________.4.(2019·郑州三模)设等比数列{a}的前n项和为S,若S=4(a+a+…+a)(n∈N*),nn2n132n-1=-,则=
数列专题复习(附答案解析).pdf
数列(1)基础达标南昌一模已知为等差数列,若=+,=+,则=.1.(2019·){an}a22a31a42a37a5________厦门一模在等比数列中,已知=,=,则=.2.(2019·){an}a21a3a52a7an________潍坊二模在等比数列中,已知=,=,为的前项和.若3.(2019·){an}a11a58a2Sn{an}n=,则=Sn1023n________.4.(2019·郑州三模)设等比数列{a}的前n项和为S,若S=4(a+a+…+a)(n∈N*),nn2n132n-1=-,则=
高考文科数学数列专题复习(附答案及解析).pdf
WORD格式高考文科数学数列专题复习数列常用公式数列的通项公式与前n项的和的关系s,n1a{a}saaa1(数列n的前n项的和为n12n).nss,n2nn1等差数列的通项公式*aa(n1)ddnad(nN)11;n等差数列其前n项和公式为n(aa)n(n1)d11n2snadn(ad)n1.n12222等比数列的通项公式a;n11n*aaqq(nN)1nq等比数列前n项的和公式为naaqa(1q),q1,q1或s1n11qs1qnnna,q1na,q111一、选择题广东卷已知等比数列{a}的公比为正数,
高考文科数学数列专题复习(附答案及解析).pdf
WORD格式高考文科数学数列专题复习数列常用公式数列的通项公式与前n项的和的关系s,n1a{a}saaa1(数列n的前n项的和为n12n).nss,n2nn1等差数列的通项公式*aa(n1)ddnad(nN)11;n等差数列其前n项和公式为n(aa)n(n1)d11n2snadn(ad)n1.n12222等比数列的通项公式a;n11n*aaqq(nN)1nq等比数列前n项的和公式为naaqa(1q),q1,q1或s1n11qs1qnnna,q1na,q111一、选择题广东卷已知等比数列{a}的公比为正数,
高考文科数学__数列专题复习(附答案及解析).doc
高考文科数学数列专题复习数列常用公式数列的通项公式与前n项的和的关系(数列的前n项的和为).等差数列的通项公式;等差数列其前n项和公式为.等比数列的通项公式;等比数列前n项的和公式为或1.(广东卷)已知等比数列的公比为正数,且·=2,=1,则=A.B.C.D.22.(安徽卷)已知为等差数列,,则等于A.-1B.1C.3D.73.(江西卷)公差不为零的等差数列的前项和为.若是的等比中项,,则等于A.18B.24C.60D.90.4(湖南卷)设是等差数列的前n项和,已知,,则等于【】A.13B.35C.49D