预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进粒子群的K-means聚类算法 Title:ImprovedParticleSwarmOptimizationforK-meansClusteringAlgorithm Abstract: Clusteringisafundamentaltaskindataminingandmachinelearning,whichaimstopartitiondatapointsintogroupsbasedontheirsimilarities.K-meansisapopularclusteringalgorithmknownforitssimplicityandefficiency.However,traditionalK-meansalgorithmhaslimitations,suchasrelianceoninitialcentroidsandtheriskofgettingstuckinlocaloptima.Toovercometheselimitations,thispaperproposesanimprovedParticleSwarmOptimization(PSO)algorithmforK-meansclustering. Introduction: TheK-meansalgorithmisawidelyusedclusteringalgorithmthataimstominimizethesumofsquareddistancesbetweendatapointsandtheirassignedcentroids.However,theperformanceofK-meansheavilydependsontheinitialselectionofcentroids,whichcanresultindifferentclusterings.Moreover,K-meansoftenstruggleswithfindingtheglobaloptimaduetoitsdeterministicnature.ThispaperintroducesanimprovedPSOalgorithmtoenhancetheperformanceoftheK-meansalgorithm. ImprovedParticleSwarmOptimizationAlgorithm: ParticleSwarmOptimizationisapopulation-basedoptimizationalgorithminspiredbythebehaviorofbirdflockingorfishschooling.IntraditionalPSO,particlesmovethroughthesearchspacebyadjustingtheirpositionsandvelocitiesbasedontheirownbest-knownpositionandtheglobalbest-knownpositionofthepopulation.IntheimprovedPSOalgorithm,weintroduceanewupdatestrategyforparticlepositions,velocities,andpersonalbest-knownpositionstooptimizetheK-meansclustering. 1.InitialCentroidGeneration: IntheimprovedPSOalgorithm,theinitialcentroidsaregeneratedusingamodifiedversionofthetraditionalK-means++initialization.Thishelpstoenhancethequalityoftheinitialcentroidsandreducestherelianceonrandominitialization. 2.EnhancedParticleMovement: ToovercomethelimitationsoftraditionalPSO,weintroducetwoenhancementstotheparticlemovementprocess.First,weincorporatealocalbest-knownpositionforeachparticle,whichenablesparticlestoexploittheirpreviousbest-knownpositions.Second,weemployavelocityclampingmechanismtolimittheexcessivemovementofp