预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进粒子群优化算法的聚类算法研究 摘要 聚类是数据挖掘中的重要问题,粒子群优化算法(PSO)已经被广泛应用于聚类问题。然而,传统的PSO算法在处理聚类问题时存在一些问题,例如易陷入局部最优解、收敛速度慢等。为了解决这些问题,文中提出了一种改进的聚类算法,该算法基于PSO算法,结合了图像分割中的思想,同时引入了两种新的操作。实验结果表明,改进算法在准确率和收敛速度上都有明显的优势。 关键词:聚类,粒子群优化,图像分割,操作 Abstract Clusteringisanimportantissueindatamining,andtheParticleSwarmOptimization(PSO)algorithmhasbeenwidelyappliedtoclusteringproblems.However,thetraditionalPSOalgorithmhassomeproblemsinhandlingclusteringproblems,suchaseasytofallintolocaloptimalsolutionsandslowconvergencespeed.Inordertosolvetheseproblems,thispaperproposesanimprovedclusteringalgorithmbasedonthePSOalgorithm,whichcombinestheideasofimagesegmentationandintroducestwonewoperations.Theexperimentalresultsshowthattheimprovedalgorithmhassignificantadvantagesinaccuracyandconvergencespeed. Keywords:clustering,particleswarmoptimization,imagesegmentation,operation Introduction Clusteringisafundamentalproblemindatamining,whichaimstogroupsimilarobjectstogether.Thegoalofclusteringistoobtainasetofclusters,whereobjectsinthesameclusteraremoresimilartoeachotherthantoobjectsinotherclusters.Clusteringhasmanyapplications,suchasimagesegmentation,documentorganization,customersegmentation,andbiologicaldataanalysis. ThePSOalgorithmisapowerfuloptimizationalgorithmthathasbeenappliedtomanyoptimizationproblems,includingclustering.ThePSOalgorithmisinspiredbysocialbehavior,whereindividuals(particles)moveinthesearchspacetofindtheglobaloptimum.InthePSOalgorithm,eachparticlerepresentsapotentialsolution,andthepositionoftheparticlecorrespondstoacandidatesolution.Thevelocityoftheparticleisupdatedbasedonitsownbestsolutionandtheswarm'sbestsolution.Thenewpositionoftheparticleisthencalculatedbasedonitsvelocity. However,thetraditionalPSOalgorithmhassomelimitationsinhandlingclusteringproblems.First,thealgorithmmaybetrappedinlocaloptimalsolutionsandfailtofindtheglobaloptimalsolution.Second,thealgorithmmayhaveslowconvergencespeed,especiallyforhigh-dimensionaldata. Toaddresstheseproblems,thispaperproposesanimprovedclusteringalgorithmbas