预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Sine-Gordon方程的H~1-Galerkin非协调混合有限元分析 Title:H1-GalerkinNonconformingMixedFiniteElementAnalysisoftheSine-GordonEquation Abstract: TheSine-Gordonequationisanonlinearpartialdifferentialequationthatarisesinvariousareasofphysicsandmathematics.ThispaperfocusesonthenumericalsolutionoftheSine-GordonequationusingtheH1-Galerkinnonconformingmixedfiniteelementmethod.Wepresentadetailedanalysisofthemethod'sformulationandimplementation,aswellasitsperformanceinapproximatingthesolutionoftheSine-Gordonequation.TheresultsdemonstratetheaccuracyandefficiencyoftheH1-Galerkinnonconformingmixedfiniteelementmethod,makingitavaluabletoolforsolvingtheSine-Gordonequation. Introduction: TheSine-Gordonequationisanonlinearwaveequationthatdescribesthepropagationofwavesinonespatialdimension.Ithasapplicationsinvariousfieldssuchassolid-statephysics,condensedmatterphysics,andfieldtheory.Theequationcanbechallengingtosolveanalytically,sonumericalmethodsareoftenemployedtoapproximateitssolutions.Inthispaper,wefocusontheH1-GalerkinnonconformingmixedfiniteelementmethodasanumericalapproachforsolvingtheSine-Gordonequation. Formulation: TheH1-GalerkinnonconformingmixedfiniteelementmethodisanumericaltechniquethatcombinestheadvantagesofthemixedfiniteelementmethodandtheGalerkinmethod.Itallowsfortheapproximationofboththeunknownsolutionanditsderivatives.TheweakformulationoftheSine-Gordonequationisderivedusingtheprincipleofvirtualwork,andappropriateweightfunctionsarechosentoobtaintheweakformsuitablefornumericalapproximation.TheH1-Galerkinnonconformingmixedfiniteelementmethodutilizespiecewisepolynomialsforthespatialapproximationandnon-conformingelements,resultinginaglobalproblemthatcanbeefficientlysolved. Implementation: TheimplementationoftheH1-GalerkinnonconformingmixedfiniteelementmethodfortheSine-Gordonequationinvolvesseveralsteps.Firstly,theproblemdomainisdiscretizedintoafinitenumberofelements,andsuitablebasisfunctionsareselectedtoapproximatethesolutionwithineachelement.Secondly,theweakformoftheSine-Gordonequation