预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用于人脸识别的改进MKD-SRC方法 Title:AnImprovedMKD-SRCMethodforFaceRecognition Abstract: Inrecentyears,facerecognitiontechnologyhasgainedsignificantattentionduetoitswiderangeofapplications,suchassecuritysystems,surveillance,andbiometricidentification.TheMulti-kernelDiscriminantSparseRepresentationClassification(MKD-SRC)methodhasemergedasapromisingtechniqueforfacerecognition.ThispaperpresentsanimprovedMKD-SRCmethodthatenhancestheaccuracyandefficiencyoffacerecognitionsystems.Theproposedmethodcombinesmultiplekernelsanddiscriminantfeaturesinasparserepresentationframework,enablingimprovedrecognitionrates. 1.Introduction: Facerecognitionisachallengingtaskduetovariationsinlightingconditions,pose,occlusions,andfacialexpressions.TheMKD-SRCmethodhasbeensuccessfulinfacerecognitionduetoitsabilitytoselectdiscriminativefeaturesandeffectivelyrepresentfaceimages.However,theoriginalMKD-SRCmethodhaslimitationsintermsofaccuracyandcomputationalefficiency.ThispaperproposesanimprovedMKD-SRCmethodtoovercometheselimitations. 2.LiteratureReview: Inthissection,acomprehensivereviewoftherelevantliteratureonfacerecognitionandcurrenttechniquesispresented.Variousmethods,suchasPrincipalComponentAnalysis(PCA),LinearDiscriminantAnalysis(LDA),andSparseRepresentationClassification(SRC),arediscussed.Thelimitationsofthesemethodsarehighlighted,leadingtothemotivationforthisresearch. 3.ProposedMethodology: TheproposedimprovedMKD-SRCmethodconsistsofthefollowingsteps: 3.1.Preprocessing:Theinputfaceimagesarepreprocessedtoenhancethequalityandreducenoise.Techniquessuchasfacealignment,normalization,andilluminationnormalizationareapplied. 3.2.FeatureExtraction:DiscriminantfeaturesareextractedusingtheDiscriminantAnalysis(DA)method.Thisextractionaimstomaximizethebetween-classscatterandminimizethewithin-classscatter. 3.3.SparseRepresentation:Theextractedfeaturesareusedtorepresentthefaceimagessparsely.Thisisachievedbysolvingasparserepresentationproblem,wherethecoefficientsarelearnedfromatrainingset. 3.4.Kernelization:Multipleker