预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

抗差EKF滤波在GNSSINS组合导航中的应用 Title:ApplicationofRobustEKFFilteringinGNSS-INSIntegrationforNavigation Abstract: TheintegrationofGlobalNavigationSatelliteSystems(GNSS)andInertialNavigationSystems(INS)hasgainedsignificantattentioninthefieldofnavigationduetothecomplementaryadvantagesofthesesystems.However,thenavigationsolutionderivedfromtheintegrationmaysufferfromerrorscausedbyoutliers,noise,andbiases.Inthispaper,wepresenttheapplicationofrobustExtendedKalmanFilter(EKF)filteringintheGNSS-INSintegrationtomitigatetheinfluenceofoutliersanduncertainties,enhancingtheaccuracyandreliabilityofthenavigationsolution.Wediscusstheprinciples,advantages,andchallengesoftherobustEKFfilteringtechniqueanddemonstrateitseffectivenessthroughsimulationresults. 1.Introduction: TheGNSS-INSintegratednavigationsystemcombinestheadvantagesofGNSS'sabsolutepositionmeasurementandINS'scontinuousnavigationsolutiontoprovideaccurateandreliablenavigationundervariousoperationalscenarios.However,theaccurateestimationofnavigationparameters,suchasposition,velocity,andattitude,isessentialforthesuccessfulintegrationofthesesystems.TherobustEKFfilteringtechniquehasemergedasaneffectivesolutiontohandleuncertainties,biases,andoutlierspresentinthemeasurementsobtainedfromGNSSandINSsensors.ThispaperaimstoinvestigatetheapplicationoftherobustEKFfilteringtechniqueintheGNSS-INSintegrationfornavigationimprovement. 2.RobustEKFFiltering: 2.1Principles: TheExtendedKalmanFilter(EKF)iswidelyusedforstateestimationinnavigationsystems.However,thetraditionalEKFissensitivetomeasurementoutliersandmodeluncertainties,whichcandegradetheaccuracyandreliabilityoftheestimatedstates.TherobustEKFfilter,alsoknownastherobustifiedEKF,addressesthisissuebyincorporatingrobustestimationtechniques. TherobustEKFfilteringtechniqueusesaweightedleastsquaresframeworktoupdatethestateestimateiteratively.Theweightsarederivedbasedonrobustestimationtheory,whichdownweightstheinfluenceofoutliersandincreasestherobustnessofthefilter.Thisfilteringtechniquemodelsmeasuremen