预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

改进遗传算法优化的BP神经网络高炉煤气预测 Title:OptimizationofBPNeuralNetworkforPredictingBlastFurnaceGasusingGeneticAlgorithm Introduction: Theoptimizationofforecastingmodelsplaysacrucialroleinvariousindustries,includingthesteelindustry.Blastfurnacegaspredictionisanessentialcomponentinensuringtheefficientoperationofblastfurnaces.Inthepast,conventionalmethodslikestatisticaltechniqueshavebeenusedforgasprediction.However,theseapproachesmaynotcapturethedynamicandcomplexrelationshipshiddeninthedata.Inrecentyears,thecombinationofartificialneuralnetworks,specificallyBPneuralnetworks,andgeneticalgorithmshasemergedasapowerfulapproachtotacklesuchproblems.ThispaperaimstoexploretheapplicationofageneticalgorithminoptimizingaBPneuralnetworkforblastfurnacegasprediction. 1.BPNeuralNetwork: TheBPneuralnetworkisawidelyusedtypeofartificialneuralnetworkwhichissuitableforsolvingcomplexregressionandforecastingproblems.Itconsistsofaninputlayer,oneormorehiddenlayers,andanoutputlayer.TheBPneuralnetworklearnsbyadjustingtheweightsandbiasesassociatedwitheachneuroninthenetworkthroughthebackpropagationalgorithm.However,theperformanceoftheBPneuralnetworkishighlydependentontheinitialweightsandbiases,makingitsusceptibletogettingstuckinlocalminima. 2.GeneticAlgorithm: Ageneticalgorithmisasearchandoptimizationtechniqueinspiredbytheprocessofnaturalselectionandgenetics.Itinvolvescreatingapopulationofindividuals(potentialsolutions)anditerativelyevolvingthemthroughprocesseslikeselection,crossover,andmutation.Thefitnessofeachindividualisevaluatedbasedonafitnessfunction,andthosewithhigherfitnessvaluesaremorelikelytoreproduceandpasstheirgenestofuturegenerations.Thegeneticalgorithmcaneffectivelyexplorealargesearchspaceandconvergetowardsanoptimalornear-optimalsolution. 3.OptimizationofBPNeuralNetworkusingGeneticAlgorithmforBlastFurnaceGasPrediction: Theoptimizationprocessinvolvesfourmainsteps: 3.1.Preprocessing: BeforetrainingtheBPneuralnetwork,itisessentialtopreprocessthedatatoeliminatenoise,handlemissingvalues,normalizethedat