预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于衬底温度和贝叶斯估计的红外非均匀性校正(英文) Abstract Infrarednon-uniformitycorrection(NUC)isoneofthekeytechnologiesininfraredimageprocessing,whichisusedtoeliminatethespatialandtemporalnon-uniformityofIRdetectorarrays.Inthispaper,weproposeamethodofinfraredNUCbasedonthesubstratetemperatureandBayesianestimation. Introduction Infraredimagingtechnologyhasbeenwidelyusedinvariousfieldsduetoitsuniqueadvantages,suchasnightvision,thermalimaging,remotesensing,andsoon.However,infrareddetectorstendtoproducespatialandtemporalnon-uniformitiesduetovariousreasons,suchastemperaturefluctuations,manufacturingdefects,andsoon.Thesenon-uniformitiesaffectthequalityoftheimagesandweakenthedetectionperformanceoftheinfraredsystems.Therefore,infrarednon-uniformitycorrection(NUC)isacrucialstepininfraredimageprocessing. InfraredNUCmethodscanberoughlydividedintotwocategories:radiometric-basedmethodsandstatistical-basedmethods.Radiometric-basedmethodsrelyontheblackbodyradiationofanexternalreferencesourcetocalibratethedetectorresponse,whilestatistical-basedmethodsestimatethenon-uniformityparametersdirectlyfromtheinfraredimagedata.Statistical-basedmethodsaremoresuitableforon-boardorreal-timeapplicationsduetotheirsimplicityandefficiency. Inthispaper,wefocusonthestatistical-basedmethodforinfraredNUC.Specifically,weproposeamethodthatcombinestheinformationofsubstratetemperatureandBayesianestimationtocorrectthenon-uniformityininfraredimages. Methodology Theproposedmethodconsistsofthreemainsteps:substratetemperaturemeasurement,non-uniformityparameterestimation,andimagecorrection. Firstly,thesubstratetemperatureismeasuredusingamicrothermocouplearrayattachedtothedetectorsubstrate.ThetemperatureinformationcanbeusedasaprioriknowledgefortheBayesianestimationofnon-uniformityparameterlater. Secondly,thenon-uniformityparametersareestimatedbasedontheinfraredimagedatausingBayesianestimation.Inourmethod,wemodelthenon-uniformityasaspatiallyvaryingGaussianprocess,whosemeanandvariancearemodeledasfunctionsofsubstratetemperature.Byutilizin