预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2019年广东省佛山市顺德区中考数学二模试卷 一、选择题(10个题,每题3分,共30分) 1.(3分)16的算术平方根为() A.±4 B.4 C.﹣4 D.8 2.(3分)2019年广东省经济保持平稳健康发展,经国家统计局核定,实现地区生产总值(GDP)97300000000元.将数据97300000000用月科学记数法表示为() A.9.73×1010 B.973×1011 C.9.73×1012 D.0.973×1013 3.(3分)下列图形中是轴对称图形,不是中心对称图形的是() A.线段 B.圆 C.平行四边形 D.角 4.(3分)计算正确的是() A.(﹣2019)0=0 B.x6÷x2=x3 C.(﹣a2b3)4=﹣a8b12 D.3a4•2a=6a5 5.(3分)在一个不透明的口袋中装有2个绿球和若干个红球,这些球除颜色外无其它差别.从这个口袋中随机摸出一个球,摸到绿球的概率为,则红球的个数是() A.2 B.4 C.6 D.8 6.(3分)若一个多边形的外角和是其内角和的,则这个多边形的边数为() A.2 B.4 C.6 D.8 7.(3分)下列一元二次方程中,没有实数根的是() A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2 8.(3分)如图,数轴上的实数a、b满足|a|﹣|a﹣b|=2a,则是() A. B. C. D. 9.(3分)△ABC中,∠C=90°,AB=10,AC=6.以点C为圆心、5为半径作圆C,则圆C与直线AB的位置关系是() A.相交 B.相切 C.相离 D.不确定 10.(3分)二次函数y=ax2+bx+c的部分图象如图,则下列说法正确的有() ①对称轴是直线x=﹣1; ②c=3; ③ab>0; ④当x<1时,y>0; ⑤方程ax2+bx+c=0的根是x1=﹣3和x2=1 A.2个 B.3个 C.4个 D.5个 二、填空题(6个题,每题4分,共24分) 11.(4分)数据﹣5,﹣3,﹣3,0,1,3的众数是. 12.(4分)如图所示的不等式组的解集是. 13.(4分)分解因式:a3﹣25a=. 14.(4分)如图,⊙O的两条直径分别为AB、CD,弦CE∥AB,∠COE=40°,则∠BOD=°. 15.(4分)如图,点P在反比例函数y=的图象上,PM⊥x轴于M.若△PMO的面积为1,则k为. 16.(4分)如图,在四边形ABCD中,AB∥CD,∠A=45°,∠B=120°,AB=5,BC=10,则CD的长为. 三、解答题(一)(3个题,每题6分,共18分) 17.(6分)计算:tan60°+(﹣1)2019. 18.(6分)先化简,再求代数式的值,其中. 19.(6分)A城市到B城市铁路里程是300千米,若旅客从A城市到B城市可选择高铁和动车两种交通工具,高铁速度是动车速度的1.5倍,时间相差30分钟,求高铁的速度. 四、解答题(二)(3个题,每题7分,共21分) 20.(7分)如图,△ABC中,AC=8,BC=10,AC>AB. (1)用尺规作图法在△ABC内求作一点D,使点D到两点A、C的距离相等,又到边AC、BC的距离相等(保留作图痕迹,不写作法); (2)若△ACD的周长为18,求△BCD的面积. 21.(7分)学生利用微课学习已经越来越多,某学校调查了若干名学生利用微课学习语文、数学、英语、物理、历史的情况,根据结果绘制成如图所示的两幅不完整的统计图. 请结合图中信息解决下列问题: (1)抽取了名学生进行调查; (2)将条形统计图补充完整; (3)估计学生利用微课学习哪科的人数最多?若该校有2000名学生,估计有多少人利用微课学习该学科. 22.(7分)矩形ABCD中,AB=4,BC=3,点E为AB的中点,将矩形ABCD沿CE折叠,使得点B落到点F的位置. (1)求证:AF∥CE; (2)求AF的长度. 五、解答题(三)(3个题,每题9分,共27分) 23.(9分)二次函数y=x2﹣2x﹣3. (1)画出上述二次函数的图象; (2)如图,二次函数的图象与x轴的其中一个交点是B,与y轴的交点是C,直线BC与反比例函数的图象交于点D.且BC=3CD,求反比例函数的解析式. (3)在(2)的条件下,x轴上的点P的横坐标是多少时,△BCP与△OCD相似. 24.(9分)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,过点C作∠BCD=∠BAC交AB的延长线于点D,过点O作直径EF∥BC,交AC于点G. (1)求证:CD是⊙O的切线; (2)若⊙O的半径为2,∠BCD=30°; ①连接AE、DE,求证:四边形ACDE是菱形; ②当点P是线段AD上的一动点时,求PF+PG的最小值. 25.(9分)如图,直线y=﹣x