预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于子集门限自回归模型的负荷短期预测(英文) Title:LoadShort-termForecastingbasedonSubsetThresholdAutoregressiveModel Abstract: Loadforecastingplaysacrucialroleinpowersystemoperation,asitprovidesvaluableinsightsforefficientgridmanagement,resourceallocation,andplanning.Accurateshort-termloadforecastingisparticularlyimportantforensuringthestabilityandreliabilityofpowersystems.Inrecentyears,thesubsetthresholdautoregressive(STAR)modelhasgainedsignificantattentionduetoitsabilitytocapturenon-linearandnon-stationaryloadbehavior.Thispaperpresentsanin-depthanalysisoftheSTARmodelanditsapplicationinloadshort-termforecasting. 1.Introduction Theaccurateforecastingofelectricloadisessentialforpowersystemoperatorsandplanners.Loadforecastinghelpsinmakinginformeddecisionsregardingpowergenerationandtransmission,optimizingresourceallocation,maintaininggridstability,andfacilitatingdemand-sidemanagement.Thispaperfocusesonshort-termloadforecasting,whichtypicallypredictstheloadinthenextfewhourstoafewdaysahead. 2.LiteratureReview Thissectionreviewstheexistingliteratureonloadforecastingtechniques,includingtraditionalmodelsliketheautoregressiveintegratedmovingaverage(ARIMA)modelandartificialintelligence-basedmodelssuchasartificialneuralnetworks(ANNs)andsupportvectormachines(SVMs).Additionally,itdiscussesthelimitationsofthesemodelsincapturingnon-linearandnon-stationaryloadbehavior. 3.SubsetThresholdAutoregressiveModel Thesubsetthresholdautoregressive(STAR)modelisaflexibleandpowerfultoolforcapturingcomplexloadpatterns.Itcombinestheadvantagesofthresholdautoregressive(TAR)modelsandsubsetmodelingtechniques.TheSTARmodelincorporatesathresholdmechanismthatallowsdifferentregimesorstatestobeidentified,therebycapturingnon-linearrelationshipsintheloaddata.Thesubsetmodelingtechniqueallowsfortheautomaticselectionofrelevantvariables,ensuringtheinclusionofimportantpredictorsforaccurateforecasting. 4.LoadDataPreprocessing BeforeapplyingtheSTARmodel,loaddatapreprocessingisnecessary.Thisstepinvolvestechniquessuchasdatacleaning,outli