预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于Q-learning的移动群智感知任务分配算法 1.Introduction Mobilecrowdsensing(MCS)isapromisingparadigmthatleveragesthepowerofmobiledevicestocollectdatafromthephysicalworld.InMCS,agroupofmobileusersarerecruitedtoperformsensingtasksthatareeither(i)predefinedbyacentralauthority(e.g.,thedeploymentofmultiplesensorsinanareatomonitoranenvironmentalfactorlikepollution)or(ii)specifiedbyparticipatingusersthemselves(e.g.,reportingeventstheyhaveobservedsuchasaccidentsortrafficjams). ToensurethatMCScanprovidetheintendedbenefit,itisessentialtodevelopefficientalgorithmsfortaskassignment.Thisprocessinvolvesselectingthemostsuitableparticipantsforeachtask,takingintoaccountfactorssuchastheirlocation,expertise,andwillingnesstocontribute.Inthispaper,weproposeataskassignmentalgorithmbasedonQ-learning,apopularreinforcementlearningtechnique. 2.RelatedWork SeveralresearchershaveproposedtaskassignmentalgorithmsforMCS,includingapproachesthatusegeneticalgorithms,swarmintelligence,andgametheory.Thesealgorithmsaimtooptimizevariousmetrics,suchastheoverallqualityofcollecteddata,thetimerequiredtocompletetasks,andtheenergyconsumptionofparticipatingdevices. Oneofthemostpopulartechniquesfortaskassignmentisreinforcementlearning,whichenablesdevicestolearnfromtheirinteractionswiththeenvironment.Reinforcementlearningmodelsaretrainedtomaximizearewardsignalthatindicateshowwelltheyareperforminggiventhecurrentstateoftheenvironment. Q-learningisapopularreinforcementlearningalgorithmthathasbeenappliedtoawiderangeofproblems,includingroboticscontrol,gameplaying,andresourceallocation.Q-learningusesatabletotracktheexpectedrewardforeachpossibleactioninagivenstate.Overtime,thetableisupdatedastheagentinteractswiththeenvironmentandreceivesfeedbackintheformofrewardsorpenalties. 3.ProposedAlgorithm Inourproposedalgorithm,eachmobiledeviceismodeledasanagentthatlearnstoselectthemostappropriatetasksbasedonitscurrentstateandtheavailableinformationabouttheenvironment.Thestateofanagentisdefinedbyitslocation,energylevel,expertise,andhistoryoftask