预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于EEMD消噪和相关系数识别的滚动轴承故障诊断方法 摘要 随着机械设备的广泛使用,滚动轴承的故障诊断已成为一项重要的研究领域。本文提出了一种基于经验模态分解(EEMD)消噪和相关系数识别的滚动轴承故障诊断方法,该方法首先采用EEMD算法对滚动轴承信号进行分解和去噪,然后利用相关系数和相关系数矩阵进行滚动轴承故障诊断。实验结果表明,该方法能够有效地识别不同类型的滚动轴承故障,并取得了较高的诊断准确率和鲁棒性。 关键词:经验模态分解、相关系数、滚动轴承、故障诊断、消噪 Abstract Rollingbearingfaultdiagnosishasbecomeanimportantresearchfieldwiththewidespreaduseofmechanicalequipment.Inthispaper,arollingbearingfaultdiagnosismethodbasedonempiricalmodedecomposition(EEMD)denoisingandcorrelationcoefficientrecognitionisproposed.Firstly,theEEMDalgorithmisusedtodecomposeanddenoisetherollingbearingsignal,andthenthecorrelationcoefficientandcorrelationcoefficientmatrixareusedforrollingbearingfaultdiagnosis.Theexperimentalresultsshowthattheproposedmethodcaneffectivelyidentifydifferenttypesofrollingbearingfaultsandachievehighdiagnosticaccuracyandrobustness. Keywords:empiricalmodedecomposition,correlationcoefficient,rollingbearing,faultdiagnosis,denoising 1.Introduction Withthedevelopmentofmechanicalequipment,rollingbearingsarewidelyusedinvariousmachineryandequipment,andthereliabilityofrollingbearingsdirectlyaffectsthesafeandstableoperationofequipment.Therefore,itisimportanttodiagnosethefaultsofrollingbearingsintimeandtakecorrespondingmeasurestoavoidseriousconsequences.Traditionalfaultdiagnosismethodsmainlyincludevibrationanalysis,acousticemissionanalysis,andtemperaturemeasurement.However,thesemethodsoftenrequirecomplexinstrumentationandprofessionalknowledge,andtheiraccuracyandrobustnessarenotveryhigh. Empiricalmodedecomposition(EMD)isadata-drivenmethodthatcanbeusedtodecomposenon-stationarysignalsintoasetofintrinsicmodefunctions(IMFs)andaresiduecomponent,whichiswidelyusedinsignalprocessing.However,theEMDmethodhassomedrawbacks,suchasmodemixingandboundaryeffects.Toovercomethesedrawbacks,Huangetal.proposedtheEEMDmethod,whichaddswhitenoisetotheoriginalsignaltoreducemodemixingandimprovedecompositionaccuracy. Correlationcoefficientisameasureofthedegreeoflinearrelationshipbetweentwovariables,anditiswidelyusedinstatisticalan