基于LSTM的滚动轴承剩余使用寿命预测.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于LSTM的滚动轴承剩余使用寿命预测.docx
基于LSTM的滚动轴承剩余使用寿命预测标题:基于LSTM的滚动轴承剩余使用寿命预测1.引言-序言引入轴承的重要性和作用-引出轴承剩余使用寿命预测的重要性及挑战-简要介绍LSTM(长短期记忆)模型,以及其在序列预测问题中的应用-指出本文旨在基于LSTM模型实现滚动轴承剩余使用寿命预测2.相关工作-综述目前滚动轴承剩余使用寿命预测的方法和技术-介绍基于机器学习的方法,如支持向量机、神经网络等-分析现有方法的优劣及其在滚动轴承剩余使用寿命预测上的限制-引出LSTM模型在序列预测中的优势,为后续章节奠定基础3.L
基于LSTM的风机滚动轴承剩余寿命预测研究.docx
基于LSTM的风机滚动轴承剩余寿命预测研究基于LSTM的风机滚动轴承剩余寿命预测研究摘要:随着清洁能源的普及应用,风力发电成为一种重要的可再生能源。然而,风机在长时间运行过程中,滚动轴承作为重要的机械元件,容易出现故障,严重影响风机的正常运行。因此,准确预测滚动轴承的剩余寿命对于风机的维护和管理至关重要。本研究旨在通过基于长短期记忆(LSTM)的预测模型,提高风机滚动轴承剩余寿命的预测准确性。1.简介1.1研究背景风机滚动轴承是风机运行中容易出现故障的关键部件之一。准确预测滚动轴承的剩余寿命,对于及时采取
基于SAM-LSTM的滚动轴承剩余寿命预测.docx
基于SAM-LSTM的滚动轴承剩余寿命预测基于SAM-LSTM的滚动轴承剩余寿命预测摘要:滚动轴承是机械设备中重要的零部件之一,在运行过程中可能会出现故障和损坏,导致设备停机和生产损失。因此,准确预测滚动轴承的剩余寿命对于设备的维修和维护十分重要。本文提出了一种基于SAM-LSTM(Self-AttentionMechanismLongShort-TermMemory)的滚动轴承剩余寿命预测方法,通过合理利用轴承的历史数据,可以实现准确地预测其剩余寿命。关键词:滚动轴承、剩余寿命预测、SAM-LSTM1.
基于BiLSTM的滚动轴承剩余使用寿命预测.docx
基于BiLSTM的滚动轴承剩余使用寿命预测目录:1.引言2.相关工作3.数据预处理4.模型设计5.实验设计6.实验结果分析7.结论与展望1.引言在工业设备运行中,设备的寿命预测一直是一个重要的课题。随着物联网技术的发展,大量的传感器数据被采集并存储,在此基础上进行设备寿命预测成为可能。其中滚动轴承是一个重要的设备,其故障将导致整个机械系统的失效。因此,滚动轴承的剩余使用寿命预测具有重要的实际意义。本文提出了一种基于BiLSTM的滚动轴承剩余使用寿命预测方法。该方法在数据预处理中采用了滑动窗口的技术,同时根
基于BLS和LSTM的剩余使用寿命预测方法及系统.pdf
本发明公开了一种基于BLS和LSTM的剩余使用寿命预测方法及系统,属于智能学习领域,包括:LSTM通过门控机制控制数据信息的传输,保留的信息生成映射特征并形成特征节点;然后将激活函数作用于随机特征节点,生成表达能力更强的增强节点,增加网络中的非线性因子;最终将特征节点和增强节点共同连接到输出层。本发明提出了一个基于宽度学习系统(BLS)的集成B‑LSTM模型,并嵌入了长短期记忆网络(LSTM),以提高模型提取时间序列信息特征的能力,与几种主流方法的比较结果显示,本发明使用的模型的可解释性和准确性更高;在对