预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种用于车道线识别的图像灰度化方法 Title:AnImageGrayscaleMethodforLaneMarkingDetectioninAutonomousDriving Abstract: Lanemarkingdetectionisacriticalcomponentinautonomousdrivingsystemsasitprovidesvitalinformationforvehiclepathplanningandcontrol.Inthispaper,weproposeanovelimagegrayscalemethodforlanemarkingdetection,aimingtoimprovetheaccuracyandrobustnessoflanerecognitioninvariousdrivingconditions.Theproposedmethodleveragesimageprocessingtechniquestoenhancethevisibilityoflanemarkings,enablingreliableextractionandsubsequentanalysisofthelaneboundaries. 1.Introduction: Autonomousvehiclesrelyonaccurateandreal-timedetectionoflanemarkingstonavigatesafelyonroads.Lanemarkingsprovideessentialguidanceforbothon-roaddrivingandlanechangingmaneuvers.Traditionalapproachesforlanedetectionoftenusecolor-basedsegmentationmethods.However,thesemethodsaresusceptibletovariationsinlightingconditions,weather,androadsurfaceconditions.Inthispaper,wepresentagrayscale-basedapproachthataddressesthelimitationsofcolor-basedtechniques. 2.ImageGrayscaleConversion: TheproposedmethodinvolvesconvertingtheinputRGBimageintograyscalerepresentationtoenhancethevisibilityoflanemarkings.Grayscaleconversioninvolvesweightaveragingofthered,green,andbluecolorchannelsoftheimage.Theresultinggrayscaleimageeliminatescolorvariations,facilitatingamoreconsistentandrobustextractionoflanemarkings. 3.ContrastEnhancement: Tofurtherenhancethevisibilityoflanemarkings,thegrayscaleimageundergoescontrastenhancementusingtechniquessuchashistogramequalization,adaptivehistogramequalization,orcontraststretching.Thesetechniqueseffectivelydistributepixelintensitiesovertheentiregrayscalerange,enhancingthedistinctionbetweenlanemarkingsandthesurroundingroadenvironment. 4.GaussianFiltering: Gaussianfilteringisappliedtothecontrast-enhancedgrayscaleimagetoreducenoiseandcreateasmootherrepresentationoftheimage.Noisereductioniscrucialforaccuratedetectionoflaneboundariesandeliminationoffalsepositivesgeneratedbyimageartifacts. 5.EdgeDetection: Thepreprocessedgrayscal