参数方程和极坐标方程知识点归纳推荐文档.docx
天马****23
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
参数方程和极坐标方程知识点归纳推荐文档.docx
专题九:坐标系与参数方程1、平面直角坐标系中的伸缩变换设点是平面直角坐标系中的任意一点,在变换的作用下,点对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。2、极坐标系的概念M在平面内取一个定点,叫做极点;自极点引一条射线叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。O图1点的极坐标:设是平面内一点,极点与点的距离叫做点的极径,记为;以极轴为始边,射线为终边的叫做点的极角,记为。有序数对叫做点的极坐标,记为.注:极坐标与表示
参数方程和极坐标方程知识点归纳.doc
专题九:坐标系与参数方程1、平面直角坐标系中的伸缩变换设点是平面直角坐标系中的任意一点,在变换的作用下,点对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。2、极坐标系的概念M在平面内取一个定点,叫做极点;自极点引一条射线叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。O图1点的极坐标:设是平面内一点,极点与点的距离叫做点的极径,记为;以极轴为始边,射线为终边的叫做点的极角,记为。有序数对叫做点的极坐标,记为.注:极坐标与表示
(完整)参数方程和极坐标方程知识点归纳.pdf
专题九:坐标系与参数方程1、平面直角坐标系中的伸缩变换xx,(0),设点P(x,y)是平面直角坐标系中的任意一点,在变换:的作用yy,(0).下,点P(x,y)对应到点P(x,y),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。2、极坐标系的概念在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。M(,)点M的极坐标:设M是平面内一点,极点O与
(完整版)极坐标与参数方程题型和方法归纳-推荐文档.doc
极坐标与参数方程题型和方法归纳题型一:极坐标(方程)与直角坐标(方程)的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。方法如下:1、已知直线的参数方程为(为参数)以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的方程为.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)写出直线与曲线交点的一个极坐标.题型二:三个常用的参数方程及其应用(1)圆的参数方程是:(2)椭圆的参数方程是:(3)过定点倾斜角为的直线的标准参数方程为:对(3)注意:点所对应的参数为,记直线上任意两点所对应的参数分别为,则
(完整版)极坐标与参数方程题型和方法归纳-推荐文档.doc
极坐标与参数方程题型和方法归纳题型一:极坐标(方程)与直角坐标(方程)的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。方法如下:1、已知直线的参数方程为(为参数)以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的方程为.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)写出直线与曲线交点的一个极坐标.题型二:三个常用的参数方程及其应用(1)圆的参数方程是:(2)椭圆的参数方程是:(3)过定点倾斜角为的直线的标准参数方程为:对(3)注意:点所对应的参数为,记直线上任意两点所对应的参数分别为,则