几类分数阶微分系统控制与应用.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
几类分数阶微分系统控制与应用.docx
几类分数阶微分系统控制与应用摘要:分数阶微积分是一种新兴的数学方法,其在科学和工程领域中得到了广泛的应用,特别是在控制系统中的应用日益受到关注。本文将介绍几类分数阶微分系统的控制方法和应用领域,并重点讨论其在医学和传输控制中的应用。本文的目的是提供一个对分数阶微分系统应用的初步了解。一、引言近年来,分数阶微积分变得越来越受到人们的关注和研究,因为分数阶微积分体系具有许多传统微积分所不能表达的问题。例如,在复杂系统的分析与建模,信号处理与控制等领域中,分数阶微积分方法已经证明了其优越性和有效性。此外,在电气
几类分数阶微分积分方程的数值解.docx
几类分数阶微分积分方程的数值解标题:分数阶微分积分方程的数值解摘要:分数阶微积分方程是一类具有分数阶导数和积分的微积分方程,近年来得到了广泛研究和应用。本论文主要介绍几种常见的分数阶微分积分方程及其数值解方法。首先介绍了分数阶微分积分方程的基本定义和性质,然后分别讨论了分数阶微分方程、分数阶积分方程和分数阶微分积分方程的数值解方法。最后通过数值实例验证了所介绍的数值解方法的有效性和精确性。关键词:分数阶微分积分方程、数值解、分数阶微分方程、分数阶积分方程1.引言分数阶微分积分方程是一类在现代科学与工程中广
几类分数阶微分方程边值问题的开题报告.docx
几类分数阶微分方程边值问题的开题报告题目:几类分数阶微分方程边值问题的研究一、研究背景随着科学技术的不断发展,许多科学领域需要用到微分方程的方法进行研究和解决。其中,分数阶微分方程是指微分方程中出现分数阶导数的方程。分数阶微积分具有更广泛的应用背景,拥有比传统整数阶微分方程更为广泛的应用场景和更高的研究价值,如图像处理、声学、物质传输、弹性波、电子传输等领域。二、研究目的本文主要针对几类分数阶微分方程边值问题进行研究,目的在于探讨分数阶微分方程在数学领域的特点、研究现状和未来发展趋势,同时将研究结果应用于
几类分数阶微分方程边值问题解的存在性.doc
几类分数阶微分方程边值问题解的存在性分数阶微积分是经典的整数阶微积分的推广,在现实生活中可以更好的描述一些复杂的实际问题.近年来,分数阶微分方程边值问题受到许多学者关注.本文运用连续性定理和不动点定理讨论了三类分数阶微分方程边值问题解的存在性.本文分为五章:第一章是绪论部分,主要介绍了研究背景、研究现状、本文的主要工作以及一些预备知识.第二章利用连续性定理研究一类在共振条件下带Riemann-Stieltjes积分条件的分数阶耦合微分系统边值问题解的存在性,建立了解的存在性定理.将单个方程的边值问题推广到
几类分数阶微分方程边值问题解的存在性.doc
几类分数阶微分方程边值问题解的存在性分数阶微积分是经典的整数阶微积分的推广,在现实生活中可以更好的描述一些复杂的实际问题.近年来,分数阶微分方程边值问题受到许多学者关注.本文运用连续性定理和不动点定理讨论了三类分数阶微分方程边值问题解的存在性.本文分为五章:第一章是绪论部分,主要介绍了研究背景、研究现状、本文的主要工作以及一些预备知识.第二章利用连续性定理研究一类在共振条件下带Riemann-Stieltjes积分条件的分数阶耦合微分系统边值问题解的存在性,建立了解的存在性定理.将单个方程的边值问题推广到