预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第十章排列、组合和二项定理④要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列.例1.有四项不同的工程,要发包给三个工程队,要求每个工程队至少要得到一项工程.共有多少种不同的发包方式?例2.7人排成一排.甲、乙两人不相邻,有多少种不同的排法?相邻元素的排列,可以采用“局部到整体”的排法,即将相邻的元素局部排列当成“一个”元素,然后再进行整体排列.例4.5个人站成一排,甲总站在乙的右侧的有多少种站法?变式:如下图所示,有5横8竖构成的方格图,从A到B只能上行或右行共有多少条不同的路线?n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n个相同小球串成一串从间隙里选m-1个结点剪截成m段.n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n个相同小球串成一串从间隙里选m-1个结点剪截成m段.编号为1至n的n个小球放入编号为1到n的n个盒子里,每个盒子放一个小球.要求小球与盒子的编号都不同,这种排列称为错位排列.7.剔除法BA①分堆问题; ②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法).